Application of state estimation based NMPC to an unstable nonlinear process

Autores
Biagiola, Silvina Ines; Figueroa, Jose Luis
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants. Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable, The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization. A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed. As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy.
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Materia
CSTR
MODEL PREDICTIVE CONTROL
OBSERVERS
PROCESS CONTROL
STATE ESTIMATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99208

id CONICETDig_33bbf88006fea957202a64ccfad1e0ca
oai_identifier_str oai:ri.conicet.gov.ar:11336/99208
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Application of state estimation based NMPC to an unstable nonlinear processBiagiola, Silvina InesFigueroa, Jose LuisCSTRMODEL PREDICTIVE CONTROLOBSERVERSPROCESS CONTROLSTATE ESTIMATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants. Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable, The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization. A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed. As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy.Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaPergamon-Elsevier Science Ltd2004-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99208Biagiola, Silvina Ines; Figueroa, Jose Luis; Application of state estimation based NMPC to an unstable nonlinear process; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 59; 21; 11-2004; 4601-46120009-2509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250904004622info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2004.07.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:30:06Zoai:ri.conicet.gov.ar:11336/99208instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:30:07.06CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Application of state estimation based NMPC to an unstable nonlinear process
title Application of state estimation based NMPC to an unstable nonlinear process
spellingShingle Application of state estimation based NMPC to an unstable nonlinear process
Biagiola, Silvina Ines
CSTR
MODEL PREDICTIVE CONTROL
OBSERVERS
PROCESS CONTROL
STATE ESTIMATION
title_short Application of state estimation based NMPC to an unstable nonlinear process
title_full Application of state estimation based NMPC to an unstable nonlinear process
title_fullStr Application of state estimation based NMPC to an unstable nonlinear process
title_full_unstemmed Application of state estimation based NMPC to an unstable nonlinear process
title_sort Application of state estimation based NMPC to an unstable nonlinear process
dc.creator.none.fl_str_mv Biagiola, Silvina Ines
Figueroa, Jose Luis
author Biagiola, Silvina Ines
author_facet Biagiola, Silvina Ines
Figueroa, Jose Luis
author_role author
author2 Figueroa, Jose Luis
author2_role author
dc.subject.none.fl_str_mv CSTR
MODEL PREDICTIVE CONTROL
OBSERVERS
PROCESS CONTROL
STATE ESTIMATION
topic CSTR
MODEL PREDICTIVE CONTROL
OBSERVERS
PROCESS CONTROL
STATE ESTIMATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants. Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable, The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization. A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed. As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy.
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
description Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants. Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable, The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization. A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed. As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy.
publishDate 2004
dc.date.none.fl_str_mv 2004-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99208
Biagiola, Silvina Ines; Figueroa, Jose Luis; Application of state estimation based NMPC to an unstable nonlinear process; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 59; 21; 11-2004; 4601-4612
0009-2509
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99208
identifier_str_mv Biagiola, Silvina Ines; Figueroa, Jose Luis; Application of state estimation based NMPC to an unstable nonlinear process; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 59; 21; 11-2004; 4601-4612
0009-2509
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250904004622
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2004.07.026
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082776152932352
score 13.22299