Application of state estimation based NMPC to an unstable nonlinear process
- Autores
- Biagiola, Silvina Ines; Figueroa, Jose Luis
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants. Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable, The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization. A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed. As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy.
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina - Materia
-
CSTR
MODEL PREDICTIVE CONTROL
OBSERVERS
PROCESS CONTROL
STATE ESTIMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99208
Ver los metadatos del registro completo
id |
CONICETDig_33bbf88006fea957202a64ccfad1e0ca |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99208 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Application of state estimation based NMPC to an unstable nonlinear processBiagiola, Silvina InesFigueroa, Jose LuisCSTRMODEL PREDICTIVE CONTROLOBSERVERSPROCESS CONTROLSTATE ESTIMATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants. Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable, The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization. A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed. As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy.Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaPergamon-Elsevier Science Ltd2004-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99208Biagiola, Silvina Ines; Figueroa, Jose Luis; Application of state estimation based NMPC to an unstable nonlinear process; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 59; 21; 11-2004; 4601-46120009-2509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250904004622info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2004.07.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:30:06Zoai:ri.conicet.gov.ar:11336/99208instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:30:07.06CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Application of state estimation based NMPC to an unstable nonlinear process |
title |
Application of state estimation based NMPC to an unstable nonlinear process |
spellingShingle |
Application of state estimation based NMPC to an unstable nonlinear process Biagiola, Silvina Ines CSTR MODEL PREDICTIVE CONTROL OBSERVERS PROCESS CONTROL STATE ESTIMATION |
title_short |
Application of state estimation based NMPC to an unstable nonlinear process |
title_full |
Application of state estimation based NMPC to an unstable nonlinear process |
title_fullStr |
Application of state estimation based NMPC to an unstable nonlinear process |
title_full_unstemmed |
Application of state estimation based NMPC to an unstable nonlinear process |
title_sort |
Application of state estimation based NMPC to an unstable nonlinear process |
dc.creator.none.fl_str_mv |
Biagiola, Silvina Ines Figueroa, Jose Luis |
author |
Biagiola, Silvina Ines |
author_facet |
Biagiola, Silvina Ines Figueroa, Jose Luis |
author_role |
author |
author2 |
Figueroa, Jose Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
CSTR MODEL PREDICTIVE CONTROL OBSERVERS PROCESS CONTROL STATE ESTIMATION |
topic |
CSTR MODEL PREDICTIVE CONTROL OBSERVERS PROCESS CONTROL STATE ESTIMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants. Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable, The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization. A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed. As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy. Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina |
description |
Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants. Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable, The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization. A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed. As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99208 Biagiola, Silvina Ines; Figueroa, Jose Luis; Application of state estimation based NMPC to an unstable nonlinear process; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 59; 21; 11-2004; 4601-4612 0009-2509 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99208 |
identifier_str_mv |
Biagiola, Silvina Ines; Figueroa, Jose Luis; Application of state estimation based NMPC to an unstable nonlinear process; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 59; 21; 11-2004; 4601-4612 0009-2509 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250904004622 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2004.07.026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082776152932352 |
score |
13.22299 |