Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data
- Autores
- Zhang, Shaohui; Korhonen, Lauri; Lang, Mait; Pisek, Jan; Díaz, Gastón Mauro; Korpela, Ilkka; Xia, Zhongyu; Haapala, Hanna; Maltamo, Matti
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Leaf area index (LAI) is an important forest canopy variable that is related to various biophysical processes of forest ecosystems. Airborne laser scanning (ALS) has shown promise in modeling and mapping LAI using different types of ALS metrics. The most common ways of modeling LAI with ALS data are multivariate empirical models and the semi-physical model shape derived from the Beer–Lambert law of radiation attenuation. We tested the utility of ALS-based empirical and semi-physical models in the estimations of effective LAI (LAIe), canopy clumping index (Omega_E), and clumping-corrected LAI at three boreal forest sites in Finland. In semi-physical models, the all echo penetration index (API) showed consistently the best performance in predicting LAIe. It is, therefore, a robust and potentially the most transferable predictor using this model shape. Empirical models overall yielded slightly better model fits compared to the semi-physical models, yet they are also more prone to overfitting. In addition, empirical models had constantly lower accuracies when predicting LAI than LAIe. We also tested the utility of ALS-based multi-angular canopy gap fraction metrics that were derived from polar transformed ALS point clouds. Images derived from polar transformed point clouds can be analyzed similarly to digital hemispherical photographs (DHPs) to obtain canopy gap fractions. The results showed that polar metrics derived from polar transformed ALS data can provide supporting information to empirical models in the estimation of LAIe, LAI, and especially Omega_E. In particular, a combination of ALS penetration indices and polar metrics yielded positive results in Omega_E estimation.
Fil: Zhang, Shaohui. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia
Fil: Korhonen, Lauri. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia
Fil: Lang, Mait. University Of Tartu. Faculty Of Science And Technology. Tartu Observatory.; Estonia
Fil: Pisek, Jan. University Of Tartu. Faculty Of Science And Technology. Tartu Observatory.; Estonia
Fil: Díaz, Gastón Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina
Fil: Korpela, Ilkka. University of Helsinki; Finlandia
Fil: Xia, Zhongyu. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia
Fil: Haapala, Hanna. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia
Fil: Maltamo, Matti. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia - Materia
-
AIRBORNE LASER SCANNING
CANOPY CLUMPING
FOREST CANOPY
LEAF AREA INDEX
LIGHT DETECTION AND RANGING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231935
Ver los metadatos del registro completo
id |
CONICETDig_d0db0025d7e7544c366dd8cb7443c788 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231935 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning DataZhang, ShaohuiKorhonen, LauriLang, MaitPisek, JanDíaz, Gastón MauroKorpela, IlkkaXia, ZhongyuHaapala, HannaMaltamo, MattiAIRBORNE LASER SCANNINGCANOPY CLUMPINGFOREST CANOPYLEAF AREA INDEXLIGHT DETECTION AND RANGINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Leaf area index (LAI) is an important forest canopy variable that is related to various biophysical processes of forest ecosystems. Airborne laser scanning (ALS) has shown promise in modeling and mapping LAI using different types of ALS metrics. The most common ways of modeling LAI with ALS data are multivariate empirical models and the semi-physical model shape derived from the Beer–Lambert law of radiation attenuation. We tested the utility of ALS-based empirical and semi-physical models in the estimations of effective LAI (LAIe), canopy clumping index (Omega_E), and clumping-corrected LAI at three boreal forest sites in Finland. In semi-physical models, the all echo penetration index (API) showed consistently the best performance in predicting LAIe. It is, therefore, a robust and potentially the most transferable predictor using this model shape. Empirical models overall yielded slightly better model fits compared to the semi-physical models, yet they are also more prone to overfitting. In addition, empirical models had constantly lower accuracies when predicting LAI than LAIe. We also tested the utility of ALS-based multi-angular canopy gap fraction metrics that were derived from polar transformed ALS point clouds. Images derived from polar transformed point clouds can be analyzed similarly to digital hemispherical photographs (DHPs) to obtain canopy gap fractions. The results showed that polar metrics derived from polar transformed ALS data can provide supporting information to empirical models in the estimation of LAIe, LAI, and especially Omega_E. In particular, a combination of ALS penetration indices and polar metrics yielded positive results in Omega_E estimation.Fil: Zhang, Shaohui. University Of Eastern Finland. Faculty Of Science And Forestry.; FinlandiaFil: Korhonen, Lauri. University Of Eastern Finland. Faculty Of Science And Forestry.; FinlandiaFil: Lang, Mait. University Of Tartu. Faculty Of Science And Technology. Tartu Observatory.; EstoniaFil: Pisek, Jan. University Of Tartu. Faculty Of Science And Technology. Tartu Observatory.; EstoniaFil: Díaz, Gastón Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaFil: Korpela, Ilkka. University of Helsinki; FinlandiaFil: Xia, Zhongyu. University Of Eastern Finland. Faculty Of Science And Forestry.; FinlandiaFil: Haapala, Hanna. University Of Eastern Finland. Faculty Of Science And Forestry.; FinlandiaFil: Maltamo, Matti. University Of Eastern Finland. Faculty Of Science And Forestry.; FinlandiaInstitute of Electrical and Electronics Engineers2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231935Zhang, Shaohui; Korhonen, Lauri; Lang, Mait; Pisek, Jan; Díaz, Gastón Mauro; et al.; Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data; Institute of Electrical and Electronics Engineers; IEEE Transactions on Geoscience and Remote Sensing; 62; 1-2024; 1-121558-0644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TGRS.2024.3353410info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:11Zoai:ri.conicet.gov.ar:11336/231935instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:12.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data |
title |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data |
spellingShingle |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data Zhang, Shaohui AIRBORNE LASER SCANNING CANOPY CLUMPING FOREST CANOPY LEAF AREA INDEX LIGHT DETECTION AND RANGING |
title_short |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data |
title_full |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data |
title_fullStr |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data |
title_full_unstemmed |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data |
title_sort |
Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data |
dc.creator.none.fl_str_mv |
Zhang, Shaohui Korhonen, Lauri Lang, Mait Pisek, Jan Díaz, Gastón Mauro Korpela, Ilkka Xia, Zhongyu Haapala, Hanna Maltamo, Matti |
author |
Zhang, Shaohui |
author_facet |
Zhang, Shaohui Korhonen, Lauri Lang, Mait Pisek, Jan Díaz, Gastón Mauro Korpela, Ilkka Xia, Zhongyu Haapala, Hanna Maltamo, Matti |
author_role |
author |
author2 |
Korhonen, Lauri Lang, Mait Pisek, Jan Díaz, Gastón Mauro Korpela, Ilkka Xia, Zhongyu Haapala, Hanna Maltamo, Matti |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
AIRBORNE LASER SCANNING CANOPY CLUMPING FOREST CANOPY LEAF AREA INDEX LIGHT DETECTION AND RANGING |
topic |
AIRBORNE LASER SCANNING CANOPY CLUMPING FOREST CANOPY LEAF AREA INDEX LIGHT DETECTION AND RANGING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Leaf area index (LAI) is an important forest canopy variable that is related to various biophysical processes of forest ecosystems. Airborne laser scanning (ALS) has shown promise in modeling and mapping LAI using different types of ALS metrics. The most common ways of modeling LAI with ALS data are multivariate empirical models and the semi-physical model shape derived from the Beer–Lambert law of radiation attenuation. We tested the utility of ALS-based empirical and semi-physical models in the estimations of effective LAI (LAIe), canopy clumping index (Omega_E), and clumping-corrected LAI at three boreal forest sites in Finland. In semi-physical models, the all echo penetration index (API) showed consistently the best performance in predicting LAIe. It is, therefore, a robust and potentially the most transferable predictor using this model shape. Empirical models overall yielded slightly better model fits compared to the semi-physical models, yet they are also more prone to overfitting. In addition, empirical models had constantly lower accuracies when predicting LAI than LAIe. We also tested the utility of ALS-based multi-angular canopy gap fraction metrics that were derived from polar transformed ALS point clouds. Images derived from polar transformed point clouds can be analyzed similarly to digital hemispherical photographs (DHPs) to obtain canopy gap fractions. The results showed that polar metrics derived from polar transformed ALS data can provide supporting information to empirical models in the estimation of LAIe, LAI, and especially Omega_E. In particular, a combination of ALS penetration indices and polar metrics yielded positive results in Omega_E estimation. Fil: Zhang, Shaohui. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia Fil: Korhonen, Lauri. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia Fil: Lang, Mait. University Of Tartu. Faculty Of Science And Technology. Tartu Observatory.; Estonia Fil: Pisek, Jan. University Of Tartu. Faculty Of Science And Technology. Tartu Observatory.; Estonia Fil: Díaz, Gastón Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina Fil: Korpela, Ilkka. University of Helsinki; Finlandia Fil: Xia, Zhongyu. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia Fil: Haapala, Hanna. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia Fil: Maltamo, Matti. University Of Eastern Finland. Faculty Of Science And Forestry.; Finlandia |
description |
Leaf area index (LAI) is an important forest canopy variable that is related to various biophysical processes of forest ecosystems. Airborne laser scanning (ALS) has shown promise in modeling and mapping LAI using different types of ALS metrics. The most common ways of modeling LAI with ALS data are multivariate empirical models and the semi-physical model shape derived from the Beer–Lambert law of radiation attenuation. We tested the utility of ALS-based empirical and semi-physical models in the estimations of effective LAI (LAIe), canopy clumping index (Omega_E), and clumping-corrected LAI at three boreal forest sites in Finland. In semi-physical models, the all echo penetration index (API) showed consistently the best performance in predicting LAIe. It is, therefore, a robust and potentially the most transferable predictor using this model shape. Empirical models overall yielded slightly better model fits compared to the semi-physical models, yet they are also more prone to overfitting. In addition, empirical models had constantly lower accuracies when predicting LAI than LAIe. We also tested the utility of ALS-based multi-angular canopy gap fraction metrics that were derived from polar transformed ALS point clouds. Images derived from polar transformed point clouds can be analyzed similarly to digital hemispherical photographs (DHPs) to obtain canopy gap fractions. The results showed that polar metrics derived from polar transformed ALS data can provide supporting information to empirical models in the estimation of LAIe, LAI, and especially Omega_E. In particular, a combination of ALS penetration indices and polar metrics yielded positive results in Omega_E estimation. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231935 Zhang, Shaohui; Korhonen, Lauri; Lang, Mait; Pisek, Jan; Díaz, Gastón Mauro; et al.; Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data; Institute of Electrical and Electronics Engineers; IEEE Transactions on Geoscience and Remote Sensing; 62; 1-2024; 1-12 1558-0644 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231935 |
identifier_str_mv |
Zhang, Shaohui; Korhonen, Lauri; Lang, Mait; Pisek, Jan; Díaz, Gastón Mauro; et al.; Comparison of Semi-Physical and Empirical Models in the Estimation of Boreal Forest Leaf Area Index and Clumping with Airborne Laser Scanning Data; Institute of Electrical and Electronics Engineers; IEEE Transactions on Geoscience and Remote Sensing; 62; 1-2024; 1-12 1558-0644 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TGRS.2024.3353410 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980570908327936 |
score |
12.993085 |