Edge deletion to tree-like graph classes
- Autores
- Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard.
Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; Argentina
Fil: Pardal, Nina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernandes Dos Santos, Vinicius. Universidade Federal de Minas Gerais; Brasil - Materia
-
EDGE DELETION PROBLEMS
MODIFICATION PROBLEMS
SPARSE GRAPH CLASSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256514
Ver los metadatos del registro completo
id |
CONICETDig_470091b614e51d3f7f169f00f04caeaa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256514 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Edge deletion to tree-like graph classesKoch, Ivo ValerioPardal, NinaFernandes Dos Santos, ViniciusEDGE DELETION PROBLEMSMODIFICATION PROBLEMSSPARSE GRAPH CLASSEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard.Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; ArgentinaFil: Pardal, Nina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Fernandes Dos Santos, Vinicius. Universidade Federal de Minas Gerais; BrasilElsevier Science2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256514Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius; Edge deletion to tree-like graph classes; Elsevier Science; Discrete Applied Mathematics; 348; 5-2024; 122-1310166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2024.01.028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:46Zoai:ri.conicet.gov.ar:11336/256514instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:46.95CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Edge deletion to tree-like graph classes |
title |
Edge deletion to tree-like graph classes |
spellingShingle |
Edge deletion to tree-like graph classes Koch, Ivo Valerio EDGE DELETION PROBLEMS MODIFICATION PROBLEMS SPARSE GRAPH CLASSES |
title_short |
Edge deletion to tree-like graph classes |
title_full |
Edge deletion to tree-like graph classes |
title_fullStr |
Edge deletion to tree-like graph classes |
title_full_unstemmed |
Edge deletion to tree-like graph classes |
title_sort |
Edge deletion to tree-like graph classes |
dc.creator.none.fl_str_mv |
Koch, Ivo Valerio Pardal, Nina Fernandes Dos Santos, Vinicius |
author |
Koch, Ivo Valerio |
author_facet |
Koch, Ivo Valerio Pardal, Nina Fernandes Dos Santos, Vinicius |
author_role |
author |
author2 |
Pardal, Nina Fernandes Dos Santos, Vinicius |
author2_role |
author author |
dc.subject.none.fl_str_mv |
EDGE DELETION PROBLEMS MODIFICATION PROBLEMS SPARSE GRAPH CLASSES |
topic |
EDGE DELETION PROBLEMS MODIFICATION PROBLEMS SPARSE GRAPH CLASSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard. Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; Argentina Fil: Pardal, Nina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Fernandes Dos Santos, Vinicius. Universidade Federal de Minas Gerais; Brasil |
description |
For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256514 Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius; Edge deletion to tree-like graph classes; Elsevier Science; Discrete Applied Mathematics; 348; 5-2024; 122-131 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/256514 |
identifier_str_mv |
Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius; Edge deletion to tree-like graph classes; Elsevier Science; Discrete Applied Mathematics; 348; 5-2024; 122-131 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2024.01.028 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269541006049280 |
score |
13.13397 |