Edge deletion to tree-like graph classes

Autores
Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard.
Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; Argentina
Fil: Pardal, Nina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernandes Dos Santos, Vinicius. Universidade Federal de Minas Gerais; Brasil
Materia
EDGE DELETION PROBLEMS
MODIFICATION PROBLEMS
SPARSE GRAPH CLASSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256514

id CONICETDig_470091b614e51d3f7f169f00f04caeaa
oai_identifier_str oai:ri.conicet.gov.ar:11336/256514
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Edge deletion to tree-like graph classesKoch, Ivo ValerioPardal, NinaFernandes Dos Santos, ViniciusEDGE DELETION PROBLEMSMODIFICATION PROBLEMSSPARSE GRAPH CLASSEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard.Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; ArgentinaFil: Pardal, Nina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Fernandes Dos Santos, Vinicius. Universidade Federal de Minas Gerais; BrasilElsevier Science2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256514Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius; Edge deletion to tree-like graph classes; Elsevier Science; Discrete Applied Mathematics; 348; 5-2024; 122-1310166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2024.01.028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:46Zoai:ri.conicet.gov.ar:11336/256514instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:46.95CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Edge deletion to tree-like graph classes
title Edge deletion to tree-like graph classes
spellingShingle Edge deletion to tree-like graph classes
Koch, Ivo Valerio
EDGE DELETION PROBLEMS
MODIFICATION PROBLEMS
SPARSE GRAPH CLASSES
title_short Edge deletion to tree-like graph classes
title_full Edge deletion to tree-like graph classes
title_fullStr Edge deletion to tree-like graph classes
title_full_unstemmed Edge deletion to tree-like graph classes
title_sort Edge deletion to tree-like graph classes
dc.creator.none.fl_str_mv Koch, Ivo Valerio
Pardal, Nina
Fernandes Dos Santos, Vinicius
author Koch, Ivo Valerio
author_facet Koch, Ivo Valerio
Pardal, Nina
Fernandes Dos Santos, Vinicius
author_role author
author2 Pardal, Nina
Fernandes Dos Santos, Vinicius
author2_role author
author
dc.subject.none.fl_str_mv EDGE DELETION PROBLEMS
MODIFICATION PROBLEMS
SPARSE GRAPH CLASSES
topic EDGE DELETION PROBLEMS
MODIFICATION PROBLEMS
SPARSE GRAPH CLASSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard.
Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; Argentina
Fil: Pardal, Nina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernandes Dos Santos, Vinicius. Universidade Federal de Minas Gerais; Brasil
description For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256514
Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius; Edge deletion to tree-like graph classes; Elsevier Science; Discrete Applied Mathematics; 348; 5-2024; 122-131
0166-218X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256514
identifier_str_mv Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius; Edge deletion to tree-like graph classes; Elsevier Science; Discrete Applied Mathematics; 348; 5-2024; 122-131
0166-218X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2024.01.028
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269541006049280
score 13.13397