Extending (τ-)tilting subcategories and (co)silting modules

Autores
Asadollahi, Javad; Padashnik, Farzad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Assume that B is a finite dimensional algebra, and A=B[P0] is the one-point extension algebra of B using a finitely generated projective B-module P0. The categories of B-modules and A-modules are connected via two adjoint functors known as the restriction and extension functors, denoted by R and E , respectively. These functors have nice homological properties and have been studied in the category mod-A of finitely presented modules that we extend to the category Mod-A of all A-modules. Our main focus is to investigate the behavior of important subcategories (tilting and τ-tilting subcategories) and objects (finendo quasi-tilting modules, silting modules, and cosilting modules) under these functors.
Fil: Asadollahi, Javad. University of Isfahan; Irán
Fil: Padashnik, Farzad. University of Isfahan; Irán
Fil: Sadeghi, Somayeh. Institute for Research in Fundamental Sciences; Irán
Fil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Tilting subcategories
Tau-tilting theory
Torsion Classes
One point extensions)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/235180

id CONICETDig_e8c703b3b0587b22cfb9f893b15161dd
oai_identifier_str oai:ri.conicet.gov.ar:11336/235180
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extending (τ-)tilting subcategories and (co)silting modulesAsadollahi, JavadPadashnik, FarzadSadeghi, SomayehTreffinger Cienfuegos, Hipolito JoséTilting subcategoriesTau-tilting theoryTorsion ClassesOne point extensions)https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Assume that B is a finite dimensional algebra, and A=B[P0] is the one-point extension algebra of B using a finitely generated projective B-module P0. The categories of B-modules and A-modules are connected via two adjoint functors known as the restriction and extension functors, denoted by R and E , respectively. These functors have nice homological properties and have been studied in the category mod-A of finitely presented modules that we extend to the category Mod-A of all A-modules. Our main focus is to investigate the behavior of important subcategories (tilting and τ-tilting subcategories) and objects (finendo quasi-tilting modules, silting modules, and cosilting modules) under these functors.Fil: Asadollahi, Javad. University of Isfahan; IránFil: Padashnik, Farzad. University of Isfahan; IránFil: Sadeghi, Somayeh. Institute for Research in Fundamental Sciences; IránFil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaTaylor & Francis Ltd2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235180Asadollahi, Javad; Padashnik, Farzad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; Extending (τ-)tilting subcategories and (co)silting modules; Taylor & Francis Ltd; Communications In Algebra; 52; 5; 3-2024; 2148-21661532-4125CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2023.2285493info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2023.2285493info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/2208.12703info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:53Zoai:ri.conicet.gov.ar:11336/235180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:53.794CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extending (τ-)tilting subcategories and (co)silting modules
title Extending (τ-)tilting subcategories and (co)silting modules
spellingShingle Extending (τ-)tilting subcategories and (co)silting modules
Asadollahi, Javad
Tilting subcategories
Tau-tilting theory
Torsion Classes
One point extensions)
title_short Extending (τ-)tilting subcategories and (co)silting modules
title_full Extending (τ-)tilting subcategories and (co)silting modules
title_fullStr Extending (τ-)tilting subcategories and (co)silting modules
title_full_unstemmed Extending (τ-)tilting subcategories and (co)silting modules
title_sort Extending (τ-)tilting subcategories and (co)silting modules
dc.creator.none.fl_str_mv Asadollahi, Javad
Padashnik, Farzad
Sadeghi, Somayeh
Treffinger Cienfuegos, Hipolito José
author Asadollahi, Javad
author_facet Asadollahi, Javad
Padashnik, Farzad
Sadeghi, Somayeh
Treffinger Cienfuegos, Hipolito José
author_role author
author2 Padashnik, Farzad
Sadeghi, Somayeh
Treffinger Cienfuegos, Hipolito José
author2_role author
author
author
dc.subject.none.fl_str_mv Tilting subcategories
Tau-tilting theory
Torsion Classes
One point extensions)
topic Tilting subcategories
Tau-tilting theory
Torsion Classes
One point extensions)
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Assume that B is a finite dimensional algebra, and A=B[P0] is the one-point extension algebra of B using a finitely generated projective B-module P0. The categories of B-modules and A-modules are connected via two adjoint functors known as the restriction and extension functors, denoted by R and E , respectively. These functors have nice homological properties and have been studied in the category mod-A of finitely presented modules that we extend to the category Mod-A of all A-modules. Our main focus is to investigate the behavior of important subcategories (tilting and τ-tilting subcategories) and objects (finendo quasi-tilting modules, silting modules, and cosilting modules) under these functors.
Fil: Asadollahi, Javad. University of Isfahan; Irán
Fil: Padashnik, Farzad. University of Isfahan; Irán
Fil: Sadeghi, Somayeh. Institute for Research in Fundamental Sciences; Irán
Fil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description Assume that B is a finite dimensional algebra, and A=B[P0] is the one-point extension algebra of B using a finitely generated projective B-module P0. The categories of B-modules and A-modules are connected via two adjoint functors known as the restriction and extension functors, denoted by R and E , respectively. These functors have nice homological properties and have been studied in the category mod-A of finitely presented modules that we extend to the category Mod-A of all A-modules. Our main focus is to investigate the behavior of important subcategories (tilting and τ-tilting subcategories) and objects (finendo quasi-tilting modules, silting modules, and cosilting modules) under these functors.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/235180
Asadollahi, Javad; Padashnik, Farzad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; Extending (τ-)tilting subcategories and (co)silting modules; Taylor & Francis Ltd; Communications In Algebra; 52; 5; 3-2024; 2148-2166
1532-4125
CONICET Digital
CONICET
url http://hdl.handle.net/11336/235180
identifier_str_mv Asadollahi, Javad; Padashnik, Farzad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; Extending (τ-)tilting subcategories and (co)silting modules; Taylor & Francis Ltd; Communications In Algebra; 52; 5; 3-2024; 2148-2166
1532-4125
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2023.2285493
info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2023.2285493
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/2208.12703
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614155897667584
score 13.070432