Extending (τ-)tilting subcategories and (co)silting modules
- Autores
- Asadollahi, Javad; Padashnik, Farzad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Assume that B is a finite dimensional algebra, and A=B[P0] is the one-point extension algebra of B using a finitely generated projective B-module P0. The categories of B-modules and A-modules are connected via two adjoint functors known as the restriction and extension functors, denoted by R and E , respectively. These functors have nice homological properties and have been studied in the category mod-A of finitely presented modules that we extend to the category Mod-A of all A-modules. Our main focus is to investigate the behavior of important subcategories (tilting and τ-tilting subcategories) and objects (finendo quasi-tilting modules, silting modules, and cosilting modules) under these functors.
Fil: Asadollahi, Javad. University of Isfahan; Irán
Fil: Padashnik, Farzad. University of Isfahan; Irán
Fil: Sadeghi, Somayeh. Institute for Research in Fundamental Sciences; Irán
Fil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Tilting subcategories
Tau-tilting theory
Torsion Classes
One point extensions) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/235180
Ver los metadatos del registro completo
id |
CONICETDig_e8c703b3b0587b22cfb9f893b15161dd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/235180 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Extending (τ-)tilting subcategories and (co)silting modulesAsadollahi, JavadPadashnik, FarzadSadeghi, SomayehTreffinger Cienfuegos, Hipolito JoséTilting subcategoriesTau-tilting theoryTorsion ClassesOne point extensions)https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Assume that B is a finite dimensional algebra, and A=B[P0] is the one-point extension algebra of B using a finitely generated projective B-module P0. The categories of B-modules and A-modules are connected via two adjoint functors known as the restriction and extension functors, denoted by R and E , respectively. These functors have nice homological properties and have been studied in the category mod-A of finitely presented modules that we extend to the category Mod-A of all A-modules. Our main focus is to investigate the behavior of important subcategories (tilting and τ-tilting subcategories) and objects (finendo quasi-tilting modules, silting modules, and cosilting modules) under these functors.Fil: Asadollahi, Javad. University of Isfahan; IránFil: Padashnik, Farzad. University of Isfahan; IránFil: Sadeghi, Somayeh. Institute for Research in Fundamental Sciences; IránFil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaTaylor & Francis Ltd2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235180Asadollahi, Javad; Padashnik, Farzad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; Extending (τ-)tilting subcategories and (co)silting modules; Taylor & Francis Ltd; Communications In Algebra; 52; 5; 3-2024; 2148-21661532-4125CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2023.2285493info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2023.2285493info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/2208.12703info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:53Zoai:ri.conicet.gov.ar:11336/235180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:53.794CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Extending (τ-)tilting subcategories and (co)silting modules |
title |
Extending (τ-)tilting subcategories and (co)silting modules |
spellingShingle |
Extending (τ-)tilting subcategories and (co)silting modules Asadollahi, Javad Tilting subcategories Tau-tilting theory Torsion Classes One point extensions) |
title_short |
Extending (τ-)tilting subcategories and (co)silting modules |
title_full |
Extending (τ-)tilting subcategories and (co)silting modules |
title_fullStr |
Extending (τ-)tilting subcategories and (co)silting modules |
title_full_unstemmed |
Extending (τ-)tilting subcategories and (co)silting modules |
title_sort |
Extending (τ-)tilting subcategories and (co)silting modules |
dc.creator.none.fl_str_mv |
Asadollahi, Javad Padashnik, Farzad Sadeghi, Somayeh Treffinger Cienfuegos, Hipolito José |
author |
Asadollahi, Javad |
author_facet |
Asadollahi, Javad Padashnik, Farzad Sadeghi, Somayeh Treffinger Cienfuegos, Hipolito José |
author_role |
author |
author2 |
Padashnik, Farzad Sadeghi, Somayeh Treffinger Cienfuegos, Hipolito José |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Tilting subcategories Tau-tilting theory Torsion Classes One point extensions) |
topic |
Tilting subcategories Tau-tilting theory Torsion Classes One point extensions) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Assume that B is a finite dimensional algebra, and A=B[P0] is the one-point extension algebra of B using a finitely generated projective B-module P0. The categories of B-modules and A-modules are connected via two adjoint functors known as the restriction and extension functors, denoted by R and E , respectively. These functors have nice homological properties and have been studied in the category mod-A of finitely presented modules that we extend to the category Mod-A of all A-modules. Our main focus is to investigate the behavior of important subcategories (tilting and τ-tilting subcategories) and objects (finendo quasi-tilting modules, silting modules, and cosilting modules) under these functors. Fil: Asadollahi, Javad. University of Isfahan; Irán Fil: Padashnik, Farzad. University of Isfahan; Irán Fil: Sadeghi, Somayeh. Institute for Research in Fundamental Sciences; Irán Fil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Assume that B is a finite dimensional algebra, and A=B[P0] is the one-point extension algebra of B using a finitely generated projective B-module P0. The categories of B-modules and A-modules are connected via two adjoint functors known as the restriction and extension functors, denoted by R and E , respectively. These functors have nice homological properties and have been studied in the category mod-A of finitely presented modules that we extend to the category Mod-A of all A-modules. Our main focus is to investigate the behavior of important subcategories (tilting and τ-tilting subcategories) and objects (finendo quasi-tilting modules, silting modules, and cosilting modules) under these functors. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/235180 Asadollahi, Javad; Padashnik, Farzad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; Extending (τ-)tilting subcategories and (co)silting modules; Taylor & Francis Ltd; Communications In Algebra; 52; 5; 3-2024; 2148-2166 1532-4125 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/235180 |
identifier_str_mv |
Asadollahi, Javad; Padashnik, Farzad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; Extending (τ-)tilting subcategories and (co)silting modules; Taylor & Francis Ltd; Communications In Algebra; 52; 5; 3-2024; 2148-2166 1532-4125 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2023.2285493 info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2023.2285493 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/2208.12703 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614155897667584 |
score |
13.070432 |