Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
- Autores
- Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; Urbassek, Herbery; Remington, Bruce A.; Meyers, Marc A.; Bringa, Eduardo Marcial
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory.
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos
Fil: Stukowski, Alexander. Universitat Technische Darmstadt; Alemania
Fil: Tang, Yizhe. Shanghai University. Shanghai Institute Of Applied Mathematics And Mechanics; China
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Erhart, Paul. Chalmers University of Technology, Department of Applied Physics; Suecia
Fil: Urbassek, Herbery. University of Kaiserslautern. Physics Department and Research Center OPTIMAS; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory;
Fil: Meyers, Marc A.. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina - Materia
-
Md Simulation
Tantalum
Nanoindentation
Plasticity
Twinning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29962
Ver los metadatos del registro completo
id |
CONICETDig_46278e817aeb398be9496f239acf8eaa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29962 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolutionRuestes, Carlos JavierStukowski, AlexanderTang, YizheTramontina Videla, Diego RamiroErhart, PaulUrbassek, HerberyRemington, Bruce A.Meyers, Marc A.Bringa, Eduardo MarcialMd SimulationTantalumNanoindentationPlasticityTwinninghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory.Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. University of California. Department of Mechanical and Aerospace Engineering; Estados UnidosFil: Stukowski, Alexander. Universitat Technische Darmstadt; AlemaniaFil: Tang, Yizhe. Shanghai University. Shanghai Institute Of Applied Mathematics And Mechanics; ChinaFil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Erhart, Paul. Chalmers University of Technology, Department of Applied Physics; SueciaFil: Urbassek, Herbery. University of Kaiserslautern. Physics Department and Research Center OPTIMAS; Estados UnidosFil: Remington, Bruce A.. Lawrence Livermore National Laboratory;Fil: Meyers, Marc A.. University of California. Department of Mechanical and Aerospace Engineering; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaElsevier Science Sa2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29962Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; et al.; Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 613; 7-2014; 390-4030921-5093CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0921509314008466info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2014.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:48Zoai:ri.conicet.gov.ar:11336/29962instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:48.829CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution |
title |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution |
spellingShingle |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution Ruestes, Carlos Javier Md Simulation Tantalum Nanoindentation Plasticity Twinning |
title_short |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution |
title_full |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution |
title_fullStr |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution |
title_full_unstemmed |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution |
title_sort |
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution |
dc.creator.none.fl_str_mv |
Ruestes, Carlos Javier Stukowski, Alexander Tang, Yizhe Tramontina Videla, Diego Ramiro Erhart, Paul Urbassek, Herbery Remington, Bruce A. Meyers, Marc A. Bringa, Eduardo Marcial |
author |
Ruestes, Carlos Javier |
author_facet |
Ruestes, Carlos Javier Stukowski, Alexander Tang, Yizhe Tramontina Videla, Diego Ramiro Erhart, Paul Urbassek, Herbery Remington, Bruce A. Meyers, Marc A. Bringa, Eduardo Marcial |
author_role |
author |
author2 |
Stukowski, Alexander Tang, Yizhe Tramontina Videla, Diego Ramiro Erhart, Paul Urbassek, Herbery Remington, Bruce A. Meyers, Marc A. Bringa, Eduardo Marcial |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Md Simulation Tantalum Nanoindentation Plasticity Twinning |
topic |
Md Simulation Tantalum Nanoindentation Plasticity Twinning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory. Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos Fil: Stukowski, Alexander. Universitat Technische Darmstadt; Alemania Fil: Tang, Yizhe. Shanghai University. Shanghai Institute Of Applied Mathematics And Mechanics; China Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Erhart, Paul. Chalmers University of Technology, Department of Applied Physics; Suecia Fil: Urbassek, Herbery. University of Kaiserslautern. Physics Department and Research Center OPTIMAS; Estados Unidos Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Fil: Meyers, Marc A.. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina |
description |
Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29962 Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; et al.; Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 613; 7-2014; 390-403 0921-5093 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29962 |
identifier_str_mv |
Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; et al.; Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 613; 7-2014; 390-403 0921-5093 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0921509314008466 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2014.07.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613539245850624 |
score |
13.070432 |