Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

Autores
Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; Urbassek, Herbery; Remington, Bruce A.; Meyers, Marc A.; Bringa, Eduardo Marcial
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic  length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory.
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos
Fil: Stukowski, Alexander. Universitat Technische Darmstadt; Alemania
Fil: Tang, Yizhe. Shanghai University. Shanghai Institute Of Applied Mathematics And Mechanics; China
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Erhart, Paul. Chalmers University of Technology, Department of Applied Physics; Suecia
Fil: Urbassek, Herbery. University of Kaiserslautern. Physics Department and Research Center OPTIMAS; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory;
Fil: Meyers, Marc A.. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Materia
Md Simulation
Tantalum
Nanoindentation
Plasticity
Twinning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29962

id CONICETDig_46278e817aeb398be9496f239acf8eaa
oai_identifier_str oai:ri.conicet.gov.ar:11336/29962
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolutionRuestes, Carlos JavierStukowski, AlexanderTang, YizheTramontina Videla, Diego RamiroErhart, PaulUrbassek, HerberyRemington, Bruce A.Meyers, Marc A.Bringa, Eduardo MarcialMd SimulationTantalumNanoindentationPlasticityTwinninghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic  length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory.Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. University of California. Department of Mechanical and Aerospace Engineering; Estados UnidosFil: Stukowski, Alexander. Universitat Technische Darmstadt; AlemaniaFil: Tang, Yizhe. Shanghai University. Shanghai Institute Of Applied Mathematics And Mechanics; ChinaFil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Erhart, Paul. Chalmers University of Technology, Department of Applied Physics; SueciaFil: Urbassek, Herbery. University of Kaiserslautern. Physics Department and Research Center OPTIMAS; Estados UnidosFil: Remington, Bruce A.. Lawrence Livermore National Laboratory;Fil: Meyers, Marc A.. University of California. Department of Mechanical and Aerospace Engineering; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaElsevier Science Sa2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29962Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; et al.; Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 613; 7-2014; 390-4030921-5093CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0921509314008466info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2014.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:48Zoai:ri.conicet.gov.ar:11336/29962instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:48.829CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
title Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
spellingShingle Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
Ruestes, Carlos Javier
Md Simulation
Tantalum
Nanoindentation
Plasticity
Twinning
title_short Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
title_full Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
title_fullStr Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
title_full_unstemmed Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
title_sort Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution
dc.creator.none.fl_str_mv Ruestes, Carlos Javier
Stukowski, Alexander
Tang, Yizhe
Tramontina Videla, Diego Ramiro
Erhart, Paul
Urbassek, Herbery
Remington, Bruce A.
Meyers, Marc A.
Bringa, Eduardo Marcial
author Ruestes, Carlos Javier
author_facet Ruestes, Carlos Javier
Stukowski, Alexander
Tang, Yizhe
Tramontina Videla, Diego Ramiro
Erhart, Paul
Urbassek, Herbery
Remington, Bruce A.
Meyers, Marc A.
Bringa, Eduardo Marcial
author_role author
author2 Stukowski, Alexander
Tang, Yizhe
Tramontina Videla, Diego Ramiro
Erhart, Paul
Urbassek, Herbery
Remington, Bruce A.
Meyers, Marc A.
Bringa, Eduardo Marcial
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Md Simulation
Tantalum
Nanoindentation
Plasticity
Twinning
topic Md Simulation
Tantalum
Nanoindentation
Plasticity
Twinning
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic  length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory.
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos
Fil: Stukowski, Alexander. Universitat Technische Darmstadt; Alemania
Fil: Tang, Yizhe. Shanghai University. Shanghai Institute Of Applied Mathematics And Mechanics; China
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Erhart, Paul. Chalmers University of Technology, Department of Applied Physics; Suecia
Fil: Urbassek, Herbery. University of Kaiserslautern. Physics Department and Research Center OPTIMAS; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory;
Fil: Meyers, Marc A.. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
description Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic  length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29962
Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; et al.; Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 613; 7-2014; 390-403
0921-5093
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29962
identifier_str_mv Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; et al.; Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 613; 7-2014; 390-403
0921-5093
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0921509314008466
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2014.07.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613539245850624
score 13.070432