Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
- Autores
- Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; Ferrante, Enzo; Das, Tilak; Whitehouse, Daniel; Rueckert, Daniel; Menon, David K; Glocker, Ben
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI.
Fil: Monteiro, Miguel. Imperial College London; Reino Unido
Fil: Newcombe, Virginia F J. Imperial College London; Reino Unido
Fil: Mathieu, Francois. University of Cambridge; Reino Unido
Fil: Adatia, Krishma. University of Cambridge; Reino Unido
Fil: Kamnitsas, Konstantinos. Imperial College London; Reino Unido
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Das, Tilak. University of Cambridge; Reino Unido
Fil: Whitehouse, Daniel. University of Cambridge; Reino Unido
Fil: Rueckert, Daniel. Imperial College London; Reino Unido
Fil: Menon, David K. University of Cambridge; Estados Unidos
Fil: Glocker, Ben. Imperial College London; Reino Unido - Materia
-
Deep Learning
Computer Tomography
Traumatic Brain Injury
Biomedical Image Segmentation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108905
Ver los metadatos del registro completo
id |
CONICETDig_45f990f1d0bb8248ea47309309fb6fbc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108905 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation studyMonteiro, MiguelNewcombe, Virginia F JMathieu, FrancoisAdatia, KrishmaKamnitsas, KonstantinosFerrante, EnzoDas, TilakWhitehouse, DanielRueckert, DanielMenon, David KGlocker, BenDeep LearningComputer TomographyTraumatic Brain InjuryBiomedical Image Segmentationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI.Fil: Monteiro, Miguel. Imperial College London; Reino UnidoFil: Newcombe, Virginia F J. Imperial College London; Reino UnidoFil: Mathieu, Francois. University of Cambridge; Reino UnidoFil: Adatia, Krishma. University of Cambridge; Reino UnidoFil: Kamnitsas, Konstantinos. Imperial College London; Reino UnidoFil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Das, Tilak. University of Cambridge; Reino UnidoFil: Whitehouse, Daniel. University of Cambridge; Reino UnidoFil: Rueckert, Daniel. Imperial College London; Reino UnidoFil: Menon, David K. University of Cambridge; Estados UnidosFil: Glocker, Ben. Imperial College London; Reino UnidoElsevier2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108905Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; et al.; Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study; Elsevier; The Lancet Digital Health; 2; 5-2020; 1-92589-7500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2589750020300856info:eu-repo/semantics/altIdentifier/doi/10.1016/S2589-7500(20)30085-6info:eu-repo/semantics/altIdentifier/url/https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30085-6/fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:32Zoai:ri.conicet.gov.ar:11336/108905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:33.312CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study |
title |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study |
spellingShingle |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study Monteiro, Miguel Deep Learning Computer Tomography Traumatic Brain Injury Biomedical Image Segmentation |
title_short |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study |
title_full |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study |
title_fullStr |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study |
title_full_unstemmed |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study |
title_sort |
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study |
dc.creator.none.fl_str_mv |
Monteiro, Miguel Newcombe, Virginia F J Mathieu, Francois Adatia, Krishma Kamnitsas, Konstantinos Ferrante, Enzo Das, Tilak Whitehouse, Daniel Rueckert, Daniel Menon, David K Glocker, Ben |
author |
Monteiro, Miguel |
author_facet |
Monteiro, Miguel Newcombe, Virginia F J Mathieu, Francois Adatia, Krishma Kamnitsas, Konstantinos Ferrante, Enzo Das, Tilak Whitehouse, Daniel Rueckert, Daniel Menon, David K Glocker, Ben |
author_role |
author |
author2 |
Newcombe, Virginia F J Mathieu, Francois Adatia, Krishma Kamnitsas, Konstantinos Ferrante, Enzo Das, Tilak Whitehouse, Daniel Rueckert, Daniel Menon, David K Glocker, Ben |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Deep Learning Computer Tomography Traumatic Brain Injury Biomedical Image Segmentation |
topic |
Deep Learning Computer Tomography Traumatic Brain Injury Biomedical Image Segmentation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI. Fil: Monteiro, Miguel. Imperial College London; Reino Unido Fil: Newcombe, Virginia F J. Imperial College London; Reino Unido Fil: Mathieu, Francois. University of Cambridge; Reino Unido Fil: Adatia, Krishma. University of Cambridge; Reino Unido Fil: Kamnitsas, Konstantinos. Imperial College London; Reino Unido Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Das, Tilak. University of Cambridge; Reino Unido Fil: Whitehouse, Daniel. University of Cambridge; Reino Unido Fil: Rueckert, Daniel. Imperial College London; Reino Unido Fil: Menon, David K. University of Cambridge; Estados Unidos Fil: Glocker, Ben. Imperial College London; Reino Unido |
description |
Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108905 Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; et al.; Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study; Elsevier; The Lancet Digital Health; 2; 5-2020; 1-9 2589-7500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108905 |
identifier_str_mv |
Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; et al.; Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study; Elsevier; The Lancet Digital Health; 2; 5-2020; 1-9 2589-7500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2589750020300856 info:eu-repo/semantics/altIdentifier/doi/10.1016/S2589-7500(20)30085-6 info:eu-repo/semantics/altIdentifier/url/https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30085-6/fulltext |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613311973294080 |
score |
13.069144 |