Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study

Autores
Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; Ferrante, Enzo; Das, Tilak; Whitehouse, Daniel; Rueckert, Daniel; Menon, David K; Glocker, Ben
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI.
Fil: Monteiro, Miguel. Imperial College London; Reino Unido
Fil: Newcombe, Virginia F J. Imperial College London; Reino Unido
Fil: Mathieu, Francois. University of Cambridge; Reino Unido
Fil: Adatia, Krishma. University of Cambridge; Reino Unido
Fil: Kamnitsas, Konstantinos. Imperial College London; Reino Unido
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Das, Tilak. University of Cambridge; Reino Unido
Fil: Whitehouse, Daniel. University of Cambridge; Reino Unido
Fil: Rueckert, Daniel. Imperial College London; Reino Unido
Fil: Menon, David K. University of Cambridge; Estados Unidos
Fil: Glocker, Ben. Imperial College London; Reino Unido
Materia
Deep Learning
Computer Tomography
Traumatic Brain Injury
Biomedical Image Segmentation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/108905

id CONICETDig_45f990f1d0bb8248ea47309309fb6fbc
oai_identifier_str oai:ri.conicet.gov.ar:11336/108905
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation studyMonteiro, MiguelNewcombe, Virginia F JMathieu, FrancoisAdatia, KrishmaKamnitsas, KonstantinosFerrante, EnzoDas, TilakWhitehouse, DanielRueckert, DanielMenon, David KGlocker, BenDeep LearningComputer TomographyTraumatic Brain InjuryBiomedical Image Segmentationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI.Fil: Monteiro, Miguel. Imperial College London; Reino UnidoFil: Newcombe, Virginia F J. Imperial College London; Reino UnidoFil: Mathieu, Francois. University of Cambridge; Reino UnidoFil: Adatia, Krishma. University of Cambridge; Reino UnidoFil: Kamnitsas, Konstantinos. Imperial College London; Reino UnidoFil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Das, Tilak. University of Cambridge; Reino UnidoFil: Whitehouse, Daniel. University of Cambridge; Reino UnidoFil: Rueckert, Daniel. Imperial College London; Reino UnidoFil: Menon, David K. University of Cambridge; Estados UnidosFil: Glocker, Ben. Imperial College London; Reino UnidoElsevier2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108905Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; et al.; Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study; Elsevier; The Lancet Digital Health; 2; 5-2020; 1-92589-7500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2589750020300856info:eu-repo/semantics/altIdentifier/doi/10.1016/S2589-7500(20)30085-6info:eu-repo/semantics/altIdentifier/url/https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30085-6/fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:32Zoai:ri.conicet.gov.ar:11336/108905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:33.312CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
title Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
spellingShingle Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
Monteiro, Miguel
Deep Learning
Computer Tomography
Traumatic Brain Injury
Biomedical Image Segmentation
title_short Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
title_full Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
title_fullStr Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
title_full_unstemmed Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
title_sort Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study
dc.creator.none.fl_str_mv Monteiro, Miguel
Newcombe, Virginia F J
Mathieu, Francois
Adatia, Krishma
Kamnitsas, Konstantinos
Ferrante, Enzo
Das, Tilak
Whitehouse, Daniel
Rueckert, Daniel
Menon, David K
Glocker, Ben
author Monteiro, Miguel
author_facet Monteiro, Miguel
Newcombe, Virginia F J
Mathieu, Francois
Adatia, Krishma
Kamnitsas, Konstantinos
Ferrante, Enzo
Das, Tilak
Whitehouse, Daniel
Rueckert, Daniel
Menon, David K
Glocker, Ben
author_role author
author2 Newcombe, Virginia F J
Mathieu, Francois
Adatia, Krishma
Kamnitsas, Konstantinos
Ferrante, Enzo
Das, Tilak
Whitehouse, Daniel
Rueckert, Daniel
Menon, David K
Glocker, Ben
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Deep Learning
Computer Tomography
Traumatic Brain Injury
Biomedical Image Segmentation
topic Deep Learning
Computer Tomography
Traumatic Brain Injury
Biomedical Image Segmentation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI.
Fil: Monteiro, Miguel. Imperial College London; Reino Unido
Fil: Newcombe, Virginia F J. Imperial College London; Reino Unido
Fil: Mathieu, Francois. University of Cambridge; Reino Unido
Fil: Adatia, Krishma. University of Cambridge; Reino Unido
Fil: Kamnitsas, Konstantinos. Imperial College London; Reino Unido
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Das, Tilak. University of Cambridge; Reino Unido
Fil: Whitehouse, Daniel. University of Cambridge; Reino Unido
Fil: Rueckert, Daniel. Imperial College London; Reino Unido
Fil: Menon, David K. University of Cambridge; Estados Unidos
Fil: Glocker, Ben. Imperial College London; Reino Unido
description Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI.
publishDate 2020
dc.date.none.fl_str_mv 2020-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/108905
Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; et al.; Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study; Elsevier; The Lancet Digital Health; 2; 5-2020; 1-9
2589-7500
CONICET Digital
CONICET
url http://hdl.handle.net/11336/108905
identifier_str_mv Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; et al.; Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study; Elsevier; The Lancet Digital Health; 2; 5-2020; 1-9
2589-7500
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2589750020300856
info:eu-repo/semantics/altIdentifier/doi/10.1016/S2589-7500(20)30085-6
info:eu-repo/semantics/altIdentifier/url/https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30085-6/fulltext
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613311973294080
score 13.069144