On a family of Hopf algebras of dimension 72
- Autores
- Andruskiewitsch, Nicolas; Vay, Cristian Damian
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate a family of Hopf algebras of dimension 72 whose coradical is isomorphic to the algebra of functions on S3. We determine the lattice of submodules of the so-called Verma modules and as a consequence we classify all simple modules. We show that these Hopf algebras are unimodular (as well as their duals) but not quasitriangular; also, they are cocycle deformations of each other.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Vay, Cristian Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
- Hopf algebras
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/199291
Ver los metadatos del registro completo
id |
CONICETDig_45c6136cb740ff3c6269006fd9994cd9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/199291 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On a family of Hopf algebras of dimension 72Andruskiewitsch, NicolasVay, Cristian DamianHopf algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate a family of Hopf algebras of dimension 72 whose coradical is isomorphic to the algebra of functions on S3. We determine the lattice of submodules of the so-called Verma modules and as a consequence we classify all simple modules. We show that these Hopf algebras are unimodular (as well as their duals) but not quasitriangular; also, they are cocycle deformations of each other.Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Vay, Cristian Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaBelgian Mathematical Soc Triomphe2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/199291Andruskiewitsch, Nicolas; Vay, Cristian Damian; On a family of Hopf algebras of dimension 72; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 19; 6-2012; 415-4431370-1444CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1105.0394info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:39Zoai:ri.conicet.gov.ar:11336/199291instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:39.657CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On a family of Hopf algebras of dimension 72 |
title |
On a family of Hopf algebras of dimension 72 |
spellingShingle |
On a family of Hopf algebras of dimension 72 Andruskiewitsch, Nicolas Hopf algebras |
title_short |
On a family of Hopf algebras of dimension 72 |
title_full |
On a family of Hopf algebras of dimension 72 |
title_fullStr |
On a family of Hopf algebras of dimension 72 |
title_full_unstemmed |
On a family of Hopf algebras of dimension 72 |
title_sort |
On a family of Hopf algebras of dimension 72 |
dc.creator.none.fl_str_mv |
Andruskiewitsch, Nicolas Vay, Cristian Damian |
author |
Andruskiewitsch, Nicolas |
author_facet |
Andruskiewitsch, Nicolas Vay, Cristian Damian |
author_role |
author |
author2 |
Vay, Cristian Damian |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hopf algebras |
topic |
Hopf algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate a family of Hopf algebras of dimension 72 whose coradical is isomorphic to the algebra of functions on S3. We determine the lattice of submodules of the so-called Verma modules and as a consequence we classify all simple modules. We show that these Hopf algebras are unimodular (as well as their duals) but not quasitriangular; also, they are cocycle deformations of each other. Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Vay, Cristian Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We investigate a family of Hopf algebras of dimension 72 whose coradical is isomorphic to the algebra of functions on S3. We determine the lattice of submodules of the so-called Verma modules and as a consequence we classify all simple modules. We show that these Hopf algebras are unimodular (as well as their duals) but not quasitriangular; also, they are cocycle deformations of each other. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/199291 Andruskiewitsch, Nicolas; Vay, Cristian Damian; On a family of Hopf algebras of dimension 72; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 19; 6-2012; 415-443 1370-1444 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/199291 |
identifier_str_mv |
Andruskiewitsch, Nicolas; Vay, Cristian Damian; On a family of Hopf algebras of dimension 72; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 19; 6-2012; 415-443 1370-1444 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1105.0394 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Belgian Mathematical Soc Triomphe |
publisher.none.fl_str_mv |
Belgian Mathematical Soc Triomphe |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613746633211904 |
score |
13.070432 |