On the structure of (co-Frobenius) Hopf algebras
- Autores
- Andruskiewitsch, Nicolas; Cuadra, Juan
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a new filtration on Hopf algebras, the standard filtration, generalizing the coradical filtration. Its zeroth term, called the Hopf coradical, is the subalgebra generated by the coradical. We give a structure theorem: any Hopf algebra with injective antipode is a deformation of the bosonization of the Hopf coradical by its diagram, a connected graded Hopf algebra in the category of Yetter-Drinfeld modules over the latter. We discuss the steps needed to classify Hopf algebras in suitable classes accordingly. For the class of co-Frobenius Hopf algebras, we prove that a Hopf algebra is co-Frobenius if and only if its Hopf coradical is so and the diagram is finite dimensional. We also prove that the standard filtration of such Hopf algebras is finite. Finally, we show that extensions of co-Frobenius (resp. cosemisimple) Hopf algebras are co-Frobenius (resp. cosemisimple).
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Cuadra, Juan. Universidad de Almería; España - Materia
-
HOPF ALGEBRAS
QUANTUM GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2272
Ver los metadatos del registro completo
id |
CONICETDig_136c7eab57ea3b9277f44018483e61e7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2272 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the structure of (co-Frobenius) Hopf algebrasAndruskiewitsch, NicolasCuadra, JuanHOPF ALGEBRASQUANTUM GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a new filtration on Hopf algebras, the standard filtration, generalizing the coradical filtration. Its zeroth term, called the Hopf coradical, is the subalgebra generated by the coradical. We give a structure theorem: any Hopf algebra with injective antipode is a deformation of the bosonization of the Hopf coradical by its diagram, a connected graded Hopf algebra in the category of Yetter-Drinfeld modules over the latter. We discuss the steps needed to classify Hopf algebras in suitable classes accordingly. For the class of co-Frobenius Hopf algebras, we prove that a Hopf algebra is co-Frobenius if and only if its Hopf coradical is so and the diagram is finite dimensional. We also prove that the standard filtration of such Hopf algebras is finite. Finally, we show that extensions of co-Frobenius (resp. cosemisimple) Hopf algebras are co-Frobenius (resp. cosemisimple).Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Cuadra, Juan. Universidad de Almería; EspañaEuropean Mathematical Society2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2272Andruskiewitsch, Nicolas; Cuadra, Juan; On the structure of (co-Frobenius) Hopf algebras; European Mathematical Society; Journal of Noncommutative Geometry; 7; 1; 3-2013; 83-1041661-6952enginfo:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=7&iss=1&rank=2info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1011.3457info:eu-repo/semantics/altIdentifier/doi/DOI:10.4171/JNCG/109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:06Zoai:ri.conicet.gov.ar:11336/2272instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:06.514CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the structure of (co-Frobenius) Hopf algebras |
title |
On the structure of (co-Frobenius) Hopf algebras |
spellingShingle |
On the structure of (co-Frobenius) Hopf algebras Andruskiewitsch, Nicolas HOPF ALGEBRAS QUANTUM GROUPS |
title_short |
On the structure of (co-Frobenius) Hopf algebras |
title_full |
On the structure of (co-Frobenius) Hopf algebras |
title_fullStr |
On the structure of (co-Frobenius) Hopf algebras |
title_full_unstemmed |
On the structure of (co-Frobenius) Hopf algebras |
title_sort |
On the structure of (co-Frobenius) Hopf algebras |
dc.creator.none.fl_str_mv |
Andruskiewitsch, Nicolas Cuadra, Juan |
author |
Andruskiewitsch, Nicolas |
author_facet |
Andruskiewitsch, Nicolas Cuadra, Juan |
author_role |
author |
author2 |
Cuadra, Juan |
author2_role |
author |
dc.subject.none.fl_str_mv |
HOPF ALGEBRAS QUANTUM GROUPS |
topic |
HOPF ALGEBRAS QUANTUM GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a new filtration on Hopf algebras, the standard filtration, generalizing the coradical filtration. Its zeroth term, called the Hopf coradical, is the subalgebra generated by the coradical. We give a structure theorem: any Hopf algebra with injective antipode is a deformation of the bosonization of the Hopf coradical by its diagram, a connected graded Hopf algebra in the category of Yetter-Drinfeld modules over the latter. We discuss the steps needed to classify Hopf algebras in suitable classes accordingly. For the class of co-Frobenius Hopf algebras, we prove that a Hopf algebra is co-Frobenius if and only if its Hopf coradical is so and the diagram is finite dimensional. We also prove that the standard filtration of such Hopf algebras is finite. Finally, we show that extensions of co-Frobenius (resp. cosemisimple) Hopf algebras are co-Frobenius (resp. cosemisimple). Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Cuadra, Juan. Universidad de Almería; España |
description |
We introduce a new filtration on Hopf algebras, the standard filtration, generalizing the coradical filtration. Its zeroth term, called the Hopf coradical, is the subalgebra generated by the coradical. We give a structure theorem: any Hopf algebra with injective antipode is a deformation of the bosonization of the Hopf coradical by its diagram, a connected graded Hopf algebra in the category of Yetter-Drinfeld modules over the latter. We discuss the steps needed to classify Hopf algebras in suitable classes accordingly. For the class of co-Frobenius Hopf algebras, we prove that a Hopf algebra is co-Frobenius if and only if its Hopf coradical is so and the diagram is finite dimensional. We also prove that the standard filtration of such Hopf algebras is finite. Finally, we show that extensions of co-Frobenius (resp. cosemisimple) Hopf algebras are co-Frobenius (resp. cosemisimple). |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2272 Andruskiewitsch, Nicolas; Cuadra, Juan; On the structure of (co-Frobenius) Hopf algebras; European Mathematical Society; Journal of Noncommutative Geometry; 7; 1; 3-2013; 83-104 1661-6952 |
url |
http://hdl.handle.net/11336/2272 |
identifier_str_mv |
Andruskiewitsch, Nicolas; Cuadra, Juan; On the structure of (co-Frobenius) Hopf algebras; European Mathematical Society; Journal of Noncommutative Geometry; 7; 1; 3-2013; 83-104 1661-6952 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=7&iss=1&rank=2 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1011.3457 info:eu-repo/semantics/altIdentifier/doi/DOI:10.4171/JNCG/109 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269323854348288 |
score |
13.13397 |