Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial

Autores
Theiller, Mariela; Toledo, Victoria; Briand, Laura Estefania
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Desde hace varios años, nuestro grupo de investigación utiliza el biocatalizador comercial Novozym® 435 en la esterificación enantioselectiva de fármacos como el S/R-ibuprofeno y S/R-ketoprofeno a los fines de obtener el enantiómero con actividad farmacológica. Este catalizador está compuesto por esferas de una resina macroporosa de polimetilmetacrilato sobre las que se encuentra la lipasa B de Candida antarctica (CALB) inmovilizada físicamente. En el proceso de esterificación enantioselectiva, el profeno racémico reacciona con un alcohol en presencia del biocatalizador para producir el éster del enantiómero R(-) y agua, lo cual permite la separación del S(+)-enantiómero. Los alcoholes de cadena corta tales como metanol, etanol, 1 y 2-propanol utilizados en la esterificación difunden en el interior de las esferas del biocatalizador provocando la disgregación-disolución del polimetilmetacrilato que constituye el soporte de la enzima CALB. Este fenómeno produce la desorción de la enzima y además, modifica la estructura interna de las esferas de biocatalizador. Este problema se utilizó como un ¨caso de estudio¨ para la búsqueda de parámetros que caractericen cuantitativamente la superficie de los materiales. En este sentido, diferentes caminos son utilizados para el estudio de las superficies. Por un lado se encuentran los modelos que permiten establecer correlaciones de altura y por otro, y se encuentra también el estudio de la textura de las imágenes de estas superficies de una manera indirecta. Los valores entre los distintos métodos pueden no coincidir, no obstante el comportamiento fractal de la muestra se mantiene en la textura de la imagen correspondiente. Esta afirmación se fundamenta en el trabajo de Pentland quien demostró matemáticamente que los niveles de gris en la imagen óptica digitalizada de una superficie fractal muestra el mismo comportamiento fractal que la superficie fractal real. Posteriormente Skands, encontró una marcada correlación lineal entre las propiedades topográficas de las superficies y los electrones secundarios emitidos desde la mismas en un SEM.En este contexto, se utilizó la microscopía electrónica de barrido y el posterior análisis de las imágenes para caracterizar la textura interna del biocatalizador y obtener más evidencias de ese fenómeno. Las esferas de Novozym® 435 se embebieron en resina y luego se seccionaron en finas láminas con un micrótomo. De estos cortes se obtuvieron imágenes en un microscopio electrónico de barrido ambiental ESEM FEI Quanta 400 en modalidad alto vacío y con una magnificación 20000X y en un Philips SEM 505 en la misma modalidad con una magnificación de 8400X. El análisis de la textura de dichas imágenes fue realizado por medio de un programa interactivo de fácil manejo llamado FERImage. Con los datos de la varianza que otorga el programa se obtienen luego los valores de varios parámetros. En este caso particular, se determinaron los D y de dmin que se calculan sumando todos los delta de grises al cuadrado resultantes del barrido de la imagen según X y según Y. Como estos dos parámetros no necesariamente son constantes en diferentes direcciones si la imagen es anisotrópica se toma un valor promedio de los valores obtenidos para dichos parámetros en cada diferente rotación entre 0° y 90°. Los valores de dmin y D que se presentan en este trabajo corresponden al promedio de cinco rotaciones entre 0º y 90º. El biocatalizador (sin contacto previo con alcohol) posee una dimensión fractal D = 2.8347 ± 0.0027 lo que indica una textura rugosa. Sin embargo, el prolongado contacto con los diversos alcoholes provocan una disminución de la dimensión fractal lo cual, evidencia cierto alisado de la textura interna de las esferas del biocatalizador.Así mismo, la disminución del parámetro D está acompañada por el aumento de la longitud del patrón que describe la textura (dmin). Este fenómeno sólo pudo producirse por la difusión del alcohol al interior de las esferas como se comentó anteriormente.
Fil: Theiller, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; Argentina
Fil: Toledo, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; Argentina
Fil: Briand, Laura Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; Argentina
Materia
Microscopia
Rugosidad
Biocatalizador
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17963

id CONICETDig_4553a00d9a74795ce1cd7ae3f1d5a947
oai_identifier_str oai:ri.conicet.gov.ar:11336/17963
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercialTheiller, MarielaToledo, VictoriaBriand, Laura EstefaniaMicroscopiaRugosidadBiocatalizadorhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Desde hace varios años, nuestro grupo de investigación utiliza el biocatalizador comercial Novozym® 435 en la esterificación enantioselectiva de fármacos como el S/R-ibuprofeno y S/R-ketoprofeno a los fines de obtener el enantiómero con actividad farmacológica. Este catalizador está compuesto por esferas de una resina macroporosa de polimetilmetacrilato sobre las que se encuentra la lipasa B de Candida antarctica (CALB) inmovilizada físicamente. En el proceso de esterificación enantioselectiva, el profeno racémico reacciona con un alcohol en presencia del biocatalizador para producir el éster del enantiómero R(-) y agua, lo cual permite la separación del S(+)-enantiómero. Los alcoholes de cadena corta tales como metanol, etanol, 1 y 2-propanol utilizados en la esterificación difunden en el interior de las esferas del biocatalizador provocando la disgregación-disolución del polimetilmetacrilato que constituye el soporte de la enzima CALB. Este fenómeno produce la desorción de la enzima y además, modifica la estructura interna de las esferas de biocatalizador. Este problema se utilizó como un ¨caso de estudio¨ para la búsqueda de parámetros que caractericen cuantitativamente la superficie de los materiales. En este sentido, diferentes caminos son utilizados para el estudio de las superficies. Por un lado se encuentran los modelos que permiten establecer correlaciones de altura y por otro, y se encuentra también el estudio de la textura de las imágenes de estas superficies de una manera indirecta. Los valores entre los distintos métodos pueden no coincidir, no obstante el comportamiento fractal de la muestra se mantiene en la textura de la imagen correspondiente. Esta afirmación se fundamenta en el trabajo de Pentland quien demostró matemáticamente que los niveles de gris en la imagen óptica digitalizada de una superficie fractal muestra el mismo comportamiento fractal que la superficie fractal real. Posteriormente Skands, encontró una marcada correlación lineal entre las propiedades topográficas de las superficies y los electrones secundarios emitidos desde la mismas en un SEM.En este contexto, se utilizó la microscopía electrónica de barrido y el posterior análisis de las imágenes para caracterizar la textura interna del biocatalizador y obtener más evidencias de ese fenómeno. Las esferas de Novozym® 435 se embebieron en resina y luego se seccionaron en finas láminas con un micrótomo. De estos cortes se obtuvieron imágenes en un microscopio electrónico de barrido ambiental ESEM FEI Quanta 400 en modalidad alto vacío y con una magnificación 20000X y en un Philips SEM 505 en la misma modalidad con una magnificación de 8400X. El análisis de la textura de dichas imágenes fue realizado por medio de un programa interactivo de fácil manejo llamado FERImage. Con los datos de la varianza que otorga el programa se obtienen luego los valores de varios parámetros. En este caso particular, se determinaron los D y de dmin que se calculan sumando todos los delta de grises al cuadrado resultantes del barrido de la imagen según X y según Y. Como estos dos parámetros no necesariamente son constantes en diferentes direcciones si la imagen es anisotrópica se toma un valor promedio de los valores obtenidos para dichos parámetros en cada diferente rotación entre 0° y 90°. Los valores de dmin y D que se presentan en este trabajo corresponden al promedio de cinco rotaciones entre 0º y 90º. El biocatalizador (sin contacto previo con alcohol) posee una dimensión fractal D = 2.8347 ± 0.0027 lo que indica una textura rugosa. Sin embargo, el prolongado contacto con los diversos alcoholes provocan una disminución de la dimensión fractal lo cual, evidencia cierto alisado de la textura interna de las esferas del biocatalizador.Así mismo, la disminución del parámetro D está acompañada por el aumento de la longitud del patrón que describe la textura (dmin). Este fenómeno sólo pudo producirse por la difusión del alcohol al interior de las esferas como se comentó anteriormente.Fil: Theiller, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; ArgentinaFil: Toledo, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; ArgentinaFil: Briand, Laura Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; ArgentinaComité Interamericano de Sociedades de Microscopía Electrónica2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17963Theiller, Mariela; Toledo, Victoria; Briand, Laura Estefania; Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial; Comité Interamericano de Sociedades de Microscopía Electrónica; Acta Microscopica; 25; supp. A; 8-2016; 177-1780798-4545spainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:25Zoai:ri.conicet.gov.ar:11336/17963instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:25.399CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial
title Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial
spellingShingle Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial
Theiller, Mariela
Microscopia
Rugosidad
Biocatalizador
title_short Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial
title_full Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial
title_fullStr Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial
title_full_unstemmed Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial
title_sort Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial
dc.creator.none.fl_str_mv Theiller, Mariela
Toledo, Victoria
Briand, Laura Estefania
author Theiller, Mariela
author_facet Theiller, Mariela
Toledo, Victoria
Briand, Laura Estefania
author_role author
author2 Toledo, Victoria
Briand, Laura Estefania
author2_role author
author
dc.subject.none.fl_str_mv Microscopia
Rugosidad
Biocatalizador
topic Microscopia
Rugosidad
Biocatalizador
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Desde hace varios años, nuestro grupo de investigación utiliza el biocatalizador comercial Novozym® 435 en la esterificación enantioselectiva de fármacos como el S/R-ibuprofeno y S/R-ketoprofeno a los fines de obtener el enantiómero con actividad farmacológica. Este catalizador está compuesto por esferas de una resina macroporosa de polimetilmetacrilato sobre las que se encuentra la lipasa B de Candida antarctica (CALB) inmovilizada físicamente. En el proceso de esterificación enantioselectiva, el profeno racémico reacciona con un alcohol en presencia del biocatalizador para producir el éster del enantiómero R(-) y agua, lo cual permite la separación del S(+)-enantiómero. Los alcoholes de cadena corta tales como metanol, etanol, 1 y 2-propanol utilizados en la esterificación difunden en el interior de las esferas del biocatalizador provocando la disgregación-disolución del polimetilmetacrilato que constituye el soporte de la enzima CALB. Este fenómeno produce la desorción de la enzima y además, modifica la estructura interna de las esferas de biocatalizador. Este problema se utilizó como un ¨caso de estudio¨ para la búsqueda de parámetros que caractericen cuantitativamente la superficie de los materiales. En este sentido, diferentes caminos son utilizados para el estudio de las superficies. Por un lado se encuentran los modelos que permiten establecer correlaciones de altura y por otro, y se encuentra también el estudio de la textura de las imágenes de estas superficies de una manera indirecta. Los valores entre los distintos métodos pueden no coincidir, no obstante el comportamiento fractal de la muestra se mantiene en la textura de la imagen correspondiente. Esta afirmación se fundamenta en el trabajo de Pentland quien demostró matemáticamente que los niveles de gris en la imagen óptica digitalizada de una superficie fractal muestra el mismo comportamiento fractal que la superficie fractal real. Posteriormente Skands, encontró una marcada correlación lineal entre las propiedades topográficas de las superficies y los electrones secundarios emitidos desde la mismas en un SEM.En este contexto, se utilizó la microscopía electrónica de barrido y el posterior análisis de las imágenes para caracterizar la textura interna del biocatalizador y obtener más evidencias de ese fenómeno. Las esferas de Novozym® 435 se embebieron en resina y luego se seccionaron en finas láminas con un micrótomo. De estos cortes se obtuvieron imágenes en un microscopio electrónico de barrido ambiental ESEM FEI Quanta 400 en modalidad alto vacío y con una magnificación 20000X y en un Philips SEM 505 en la misma modalidad con una magnificación de 8400X. El análisis de la textura de dichas imágenes fue realizado por medio de un programa interactivo de fácil manejo llamado FERImage. Con los datos de la varianza que otorga el programa se obtienen luego los valores de varios parámetros. En este caso particular, se determinaron los D y de dmin que se calculan sumando todos los delta de grises al cuadrado resultantes del barrido de la imagen según X y según Y. Como estos dos parámetros no necesariamente son constantes en diferentes direcciones si la imagen es anisotrópica se toma un valor promedio de los valores obtenidos para dichos parámetros en cada diferente rotación entre 0° y 90°. Los valores de dmin y D que se presentan en este trabajo corresponden al promedio de cinco rotaciones entre 0º y 90º. El biocatalizador (sin contacto previo con alcohol) posee una dimensión fractal D = 2.8347 ± 0.0027 lo que indica una textura rugosa. Sin embargo, el prolongado contacto con los diversos alcoholes provocan una disminución de la dimensión fractal lo cual, evidencia cierto alisado de la textura interna de las esferas del biocatalizador.Así mismo, la disminución del parámetro D está acompañada por el aumento de la longitud del patrón que describe la textura (dmin). Este fenómeno sólo pudo producirse por la difusión del alcohol al interior de las esferas como se comentó anteriormente.
Fil: Theiller, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; Argentina
Fil: Toledo, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; Argentina
Fil: Briand, Laura Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigación y Desarrollo En Ciencias Aplicadas ; Argentina
description Desde hace varios años, nuestro grupo de investigación utiliza el biocatalizador comercial Novozym® 435 en la esterificación enantioselectiva de fármacos como el S/R-ibuprofeno y S/R-ketoprofeno a los fines de obtener el enantiómero con actividad farmacológica. Este catalizador está compuesto por esferas de una resina macroporosa de polimetilmetacrilato sobre las que se encuentra la lipasa B de Candida antarctica (CALB) inmovilizada físicamente. En el proceso de esterificación enantioselectiva, el profeno racémico reacciona con un alcohol en presencia del biocatalizador para producir el éster del enantiómero R(-) y agua, lo cual permite la separación del S(+)-enantiómero. Los alcoholes de cadena corta tales como metanol, etanol, 1 y 2-propanol utilizados en la esterificación difunden en el interior de las esferas del biocatalizador provocando la disgregación-disolución del polimetilmetacrilato que constituye el soporte de la enzima CALB. Este fenómeno produce la desorción de la enzima y además, modifica la estructura interna de las esferas de biocatalizador. Este problema se utilizó como un ¨caso de estudio¨ para la búsqueda de parámetros que caractericen cuantitativamente la superficie de los materiales. En este sentido, diferentes caminos son utilizados para el estudio de las superficies. Por un lado se encuentran los modelos que permiten establecer correlaciones de altura y por otro, y se encuentra también el estudio de la textura de las imágenes de estas superficies de una manera indirecta. Los valores entre los distintos métodos pueden no coincidir, no obstante el comportamiento fractal de la muestra se mantiene en la textura de la imagen correspondiente. Esta afirmación se fundamenta en el trabajo de Pentland quien demostró matemáticamente que los niveles de gris en la imagen óptica digitalizada de una superficie fractal muestra el mismo comportamiento fractal que la superficie fractal real. Posteriormente Skands, encontró una marcada correlación lineal entre las propiedades topográficas de las superficies y los electrones secundarios emitidos desde la mismas en un SEM.En este contexto, se utilizó la microscopía electrónica de barrido y el posterior análisis de las imágenes para caracterizar la textura interna del biocatalizador y obtener más evidencias de ese fenómeno. Las esferas de Novozym® 435 se embebieron en resina y luego se seccionaron en finas láminas con un micrótomo. De estos cortes se obtuvieron imágenes en un microscopio electrónico de barrido ambiental ESEM FEI Quanta 400 en modalidad alto vacío y con una magnificación 20000X y en un Philips SEM 505 en la misma modalidad con una magnificación de 8400X. El análisis de la textura de dichas imágenes fue realizado por medio de un programa interactivo de fácil manejo llamado FERImage. Con los datos de la varianza que otorga el programa se obtienen luego los valores de varios parámetros. En este caso particular, se determinaron los D y de dmin que se calculan sumando todos los delta de grises al cuadrado resultantes del barrido de la imagen según X y según Y. Como estos dos parámetros no necesariamente son constantes en diferentes direcciones si la imagen es anisotrópica se toma un valor promedio de los valores obtenidos para dichos parámetros en cada diferente rotación entre 0° y 90°. Los valores de dmin y D que se presentan en este trabajo corresponden al promedio de cinco rotaciones entre 0º y 90º. El biocatalizador (sin contacto previo con alcohol) posee una dimensión fractal D = 2.8347 ± 0.0027 lo que indica una textura rugosa. Sin embargo, el prolongado contacto con los diversos alcoholes provocan una disminución de la dimensión fractal lo cual, evidencia cierto alisado de la textura interna de las esferas del biocatalizador.Así mismo, la disminución del parámetro D está acompañada por el aumento de la longitud del patrón que describe la textura (dmin). Este fenómeno sólo pudo producirse por la difusión del alcohol al interior de las esferas como se comentó anteriormente.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17963
Theiller, Mariela; Toledo, Victoria; Briand, Laura Estefania; Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial; Comité Interamericano de Sociedades de Microscopía Electrónica; Acta Microscopica; 25; supp. A; 8-2016; 177-178
0798-4545
url http://hdl.handle.net/11336/17963
identifier_str_mv Theiller, Mariela; Toledo, Victoria; Briand, Laura Estefania; Aplicación de la microscopia electrónica al estudio de la rugosidad de un biocatalizador comercial; Comité Interamericano de Sociedades de Microscopía Electrónica; Acta Microscopica; 25; supp. A; 8-2016; 177-178
0798-4545
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Comité Interamericano de Sociedades de Microscopía Electrónica
publisher.none.fl_str_mv Comité Interamericano de Sociedades de Microscopía Electrónica
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270044156854272
score 13.13397