A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling
- Autores
- Lafuente, Deborah; Cohen, Brenda; Fiorini, Guillermo; Garcia, Agustin Alejo; Bringas, Mauro; Morzan, Ezequiel Martin; Onna, Diego Ariel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Machine learning, a subdomain of artificial intelligence, is a widespread technology that is molding how chemists interact with data. Therefore, it is a relevant skill to incorporate into the toolbox of any chemistry student. This work presents a workshop that introduces machine learning for chemistry students based on a set of Python notebooks and assignments. Python, one of the most popular programming languages, is open source, free to use, and has plenty of learning resources. The workshop is designed for students without previous experience in programming, and it aims for a deeper understanding of the complexity of concepts in programming and machine learning. The examples used correspond to real data from physicochemical characterizations of wine, a content that is of interest for students. The contents of the workshop are introduction to Python, basic statistics, data visualization, and dimension reduction, classification, and regression.
Fil: Lafuente, Deborah. Universidad de Buenos Aires; Argentina
Fil: Cohen, Brenda. Universidad de Buenos Aires; Argentina
Fil: Fiorini, Guillermo. Universidad de Buenos Aires; Argentina
Fil: Garcia, Agustin Alejo. Universidad de Buenos Aires; Argentina
Fil: Bringas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Onna, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina - Materia
-
CHEMOINFORMATICS
CHEMOMETRICS
COMPUTATIONAL CHEMISTRY
COMPUTER-BASED LEARNING
INTERDISCIPLINARY/MULTIDISCIPLINARY
UPPER-DIVISION UNDERGRADUATE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/147938
Ver los metadatos del registro completo
id |
CONICETDig_44e0f41b44faeb3d29fb58fbfabb6fbc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/147938 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and ModelingLafuente, DeborahCohen, BrendaFiorini, GuillermoGarcia, Agustin AlejoBringas, MauroMorzan, Ezequiel MartinOnna, Diego ArielCHEMOINFORMATICSCHEMOMETRICSCOMPUTATIONAL CHEMISTRYCOMPUTER-BASED LEARNINGINTERDISCIPLINARY/MULTIDISCIPLINARYUPPER-DIVISION UNDERGRADUATEhttps://purl.org/becyt/ford/5.3https://purl.org/becyt/ford/5Machine learning, a subdomain of artificial intelligence, is a widespread technology that is molding how chemists interact with data. Therefore, it is a relevant skill to incorporate into the toolbox of any chemistry student. This work presents a workshop that introduces machine learning for chemistry students based on a set of Python notebooks and assignments. Python, one of the most popular programming languages, is open source, free to use, and has plenty of learning resources. The workshop is designed for students without previous experience in programming, and it aims for a deeper understanding of the complexity of concepts in programming and machine learning. The examples used correspond to real data from physicochemical characterizations of wine, a content that is of interest for students. The contents of the workshop are introduction to Python, basic statistics, data visualization, and dimension reduction, classification, and regression.Fil: Lafuente, Deborah. Universidad de Buenos Aires; ArgentinaFil: Cohen, Brenda. Universidad de Buenos Aires; ArgentinaFil: Fiorini, Guillermo. Universidad de Buenos Aires; ArgentinaFil: Garcia, Agustin Alejo. Universidad de Buenos Aires; ArgentinaFil: Bringas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Onna, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaAmerican Chemical Society2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147938Lafuente, Deborah; Cohen, Brenda; Fiorini, Guillermo; Garcia, Agustin Alejo; Bringas, Mauro; et al.; A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling; American Chemical Society; Journal Of Chemical Education; 98; 9; 8-2021; 2892-28980021-9584CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00142info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jchemed.1c00142info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:31Zoai:ri.conicet.gov.ar:11336/147938instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:31.995CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling |
title |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling |
spellingShingle |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling Lafuente, Deborah CHEMOINFORMATICS CHEMOMETRICS COMPUTATIONAL CHEMISTRY COMPUTER-BASED LEARNING INTERDISCIPLINARY/MULTIDISCIPLINARY UPPER-DIVISION UNDERGRADUATE |
title_short |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling |
title_full |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling |
title_fullStr |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling |
title_full_unstemmed |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling |
title_sort |
A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling |
dc.creator.none.fl_str_mv |
Lafuente, Deborah Cohen, Brenda Fiorini, Guillermo Garcia, Agustin Alejo Bringas, Mauro Morzan, Ezequiel Martin Onna, Diego Ariel |
author |
Lafuente, Deborah |
author_facet |
Lafuente, Deborah Cohen, Brenda Fiorini, Guillermo Garcia, Agustin Alejo Bringas, Mauro Morzan, Ezequiel Martin Onna, Diego Ariel |
author_role |
author |
author2 |
Cohen, Brenda Fiorini, Guillermo Garcia, Agustin Alejo Bringas, Mauro Morzan, Ezequiel Martin Onna, Diego Ariel |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
CHEMOINFORMATICS CHEMOMETRICS COMPUTATIONAL CHEMISTRY COMPUTER-BASED LEARNING INTERDISCIPLINARY/MULTIDISCIPLINARY UPPER-DIVISION UNDERGRADUATE |
topic |
CHEMOINFORMATICS CHEMOMETRICS COMPUTATIONAL CHEMISTRY COMPUTER-BASED LEARNING INTERDISCIPLINARY/MULTIDISCIPLINARY UPPER-DIVISION UNDERGRADUATE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.3 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
Machine learning, a subdomain of artificial intelligence, is a widespread technology that is molding how chemists interact with data. Therefore, it is a relevant skill to incorporate into the toolbox of any chemistry student. This work presents a workshop that introduces machine learning for chemistry students based on a set of Python notebooks and assignments. Python, one of the most popular programming languages, is open source, free to use, and has plenty of learning resources. The workshop is designed for students without previous experience in programming, and it aims for a deeper understanding of the complexity of concepts in programming and machine learning. The examples used correspond to real data from physicochemical characterizations of wine, a content that is of interest for students. The contents of the workshop are introduction to Python, basic statistics, data visualization, and dimension reduction, classification, and regression. Fil: Lafuente, Deborah. Universidad de Buenos Aires; Argentina Fil: Cohen, Brenda. Universidad de Buenos Aires; Argentina Fil: Fiorini, Guillermo. Universidad de Buenos Aires; Argentina Fil: Garcia, Agustin Alejo. Universidad de Buenos Aires; Argentina Fil: Bringas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Morzan, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Onna, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina |
description |
Machine learning, a subdomain of artificial intelligence, is a widespread technology that is molding how chemists interact with data. Therefore, it is a relevant skill to incorporate into the toolbox of any chemistry student. This work presents a workshop that introduces machine learning for chemistry students based on a set of Python notebooks and assignments. Python, one of the most popular programming languages, is open source, free to use, and has plenty of learning resources. The workshop is designed for students without previous experience in programming, and it aims for a deeper understanding of the complexity of concepts in programming and machine learning. The examples used correspond to real data from physicochemical characterizations of wine, a content that is of interest for students. The contents of the workshop are introduction to Python, basic statistics, data visualization, and dimension reduction, classification, and regression. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/147938 Lafuente, Deborah; Cohen, Brenda; Fiorini, Guillermo; Garcia, Agustin Alejo; Bringas, Mauro; et al.; A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling; American Chemical Society; Journal Of Chemical Education; 98; 9; 8-2021; 2892-2898 0021-9584 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/147938 |
identifier_str_mv |
Lafuente, Deborah; Cohen, Brenda; Fiorini, Guillermo; Garcia, Agustin Alejo; Bringas, Mauro; et al.; A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling; American Chemical Society; Journal Of Chemical Education; 98; 9; 8-2021; 2892-2898 0021-9584 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00142 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jchemed.1c00142 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613282352070656 |
score |
13.070432 |