Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students
- Autores
- Antonelli, Tomás; Olivieri, Alejandro Cesar
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- During a short chemometrics course in the seventh semester of the chemistry undergraduate program, students receive a brief theoretical introduction to multivariate calibration, focused on partial least-squares regression as the most commonly employed data processing tool. The theory is complemented with the use of MVC1_R, an easy-to-use software developed in-house as an R Shiny application. The present report describes student activities with the latter software in the development of mathematical models to predict quality parameters of corn seeds from near-infrared spectra. Subsequently, an experimental project is carried out involving near-infrared spectral measurements, which are widely used in several industrial fields for quality control. To process the obtained data, students apply the knowledge acquired during the theoretical/software sessions.
Fil: Antonelli, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina - Materia
-
ANALYTICAL CHEMISTRY
CALIBRATION
CHEMOMETRICS
COMPUTER-BASED LEARNING
GRADUATE EDUCATION/RESEARCH
IR SPECTROSCOPY
UPPER-DIVISION UNDERGRADUATE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127050
Ver los metadatos del registro completo
id |
CONICETDig_0befaa76ed7e442ae753432affbbd3db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127050 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate StudentsAntonelli, TomásOlivieri, Alejandro CesarANALYTICAL CHEMISTRYCALIBRATIONCHEMOMETRICSCOMPUTER-BASED LEARNINGGRADUATE EDUCATION/RESEARCHIR SPECTROSCOPYUPPER-DIVISION UNDERGRADUATEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1During a short chemometrics course in the seventh semester of the chemistry undergraduate program, students receive a brief theoretical introduction to multivariate calibration, focused on partial least-squares regression as the most commonly employed data processing tool. The theory is complemented with the use of MVC1_R, an easy-to-use software developed in-house as an R Shiny application. The present report describes student activities with the latter software in the development of mathematical models to predict quality parameters of corn seeds from near-infrared spectra. Subsequently, an experimental project is carried out involving near-infrared spectral measurements, which are widely used in several industrial fields for quality control. To process the obtained data, students apply the knowledge acquired during the theoretical/software sessions.Fil: Antonelli, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaAmerican Chemical Society2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127050Antonelli, Tomás; Olivieri, Alejandro Cesar; Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students; American Chemical Society; Journal of Chemical Education; 97; 4; 4-2020; 1176-11800021-9584CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jchemed.9b00850info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jchemed.9b00850info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:19Zoai:ri.conicet.gov.ar:11336/127050instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:19.426CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students |
title |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students |
spellingShingle |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students Antonelli, Tomás ANALYTICAL CHEMISTRY CALIBRATION CHEMOMETRICS COMPUTER-BASED LEARNING GRADUATE EDUCATION/RESEARCH IR SPECTROSCOPY UPPER-DIVISION UNDERGRADUATE |
title_short |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students |
title_full |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students |
title_fullStr |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students |
title_full_unstemmed |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students |
title_sort |
Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students |
dc.creator.none.fl_str_mv |
Antonelli, Tomás Olivieri, Alejandro Cesar |
author |
Antonelli, Tomás |
author_facet |
Antonelli, Tomás Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Olivieri, Alejandro Cesar |
author2_role |
author |
dc.subject.none.fl_str_mv |
ANALYTICAL CHEMISTRY CALIBRATION CHEMOMETRICS COMPUTER-BASED LEARNING GRADUATE EDUCATION/RESEARCH IR SPECTROSCOPY UPPER-DIVISION UNDERGRADUATE |
topic |
ANALYTICAL CHEMISTRY CALIBRATION CHEMOMETRICS COMPUTER-BASED LEARNING GRADUATE EDUCATION/RESEARCH IR SPECTROSCOPY UPPER-DIVISION UNDERGRADUATE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
During a short chemometrics course in the seventh semester of the chemistry undergraduate program, students receive a brief theoretical introduction to multivariate calibration, focused on partial least-squares regression as the most commonly employed data processing tool. The theory is complemented with the use of MVC1_R, an easy-to-use software developed in-house as an R Shiny application. The present report describes student activities with the latter software in the development of mathematical models to predict quality parameters of corn seeds from near-infrared spectra. Subsequently, an experimental project is carried out involving near-infrared spectral measurements, which are widely used in several industrial fields for quality control. To process the obtained data, students apply the knowledge acquired during the theoretical/software sessions. Fil: Antonelli, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina |
description |
During a short chemometrics course in the seventh semester of the chemistry undergraduate program, students receive a brief theoretical introduction to multivariate calibration, focused on partial least-squares regression as the most commonly employed data processing tool. The theory is complemented with the use of MVC1_R, an easy-to-use software developed in-house as an R Shiny application. The present report describes student activities with the latter software in the development of mathematical models to predict quality parameters of corn seeds from near-infrared spectra. Subsequently, an experimental project is carried out involving near-infrared spectral measurements, which are widely used in several industrial fields for quality control. To process the obtained data, students apply the knowledge acquired during the theoretical/software sessions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127050 Antonelli, Tomás; Olivieri, Alejandro Cesar; Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students; American Chemical Society; Journal of Chemical Education; 97; 4; 4-2020; 1176-1180 0021-9584 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127050 |
identifier_str_mv |
Antonelli, Tomás; Olivieri, Alejandro Cesar; Developing and Implementing an R Shiny Application to Introduce Multivariate Calibration to Advanced Undergraduate Students; American Chemical Society; Journal of Chemical Education; 97; 4; 4-2020; 1176-1180 0021-9584 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jchemed.9b00850 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jchemed.9b00850 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614443873337344 |
score |
13.070432 |