Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens
- Autores
- Alvarez, Verónica Elizabeth; Quiroga, María Paula; Centrón, Daniela
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites.
Fil: Alvarez, Verónica Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina
Fil: Quiroga, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina
Fil: Centrón, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina - Materia
-
ACINETOBACTER BAUMANNII
BIOMARKERS
ESKAPE PATHOGENS
GC1
HIGH-RISK CLONES
MACHINE LEARNING
METABOLIC FITNESS
PCR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227652
Ver los metadatos del registro completo
| id |
CONICETDig_44cd121f2ff18a74a213444e49e85901 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227652 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE PathogensAlvarez, Verónica ElizabethQuiroga, María PaulaCentrón, DanielaACINETOBACTER BAUMANNIIBIOMARKERSESKAPE PATHOGENSGC1HIGH-RISK CLONESMACHINE LEARNINGMETABOLIC FITNESSPCRhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites.Fil: Alvarez, Verónica Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Quiroga, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Centrón, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaAmerican Society for Microbiology2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227652Alvarez, Verónica Elizabeth; Quiroga, María Paula; Centrón, Daniela; Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens; American Society for Microbiology; mSystems; 8; 3; 2-2023; 1-202379-5077CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1128/msystems.00734-22info:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/msystems.00734-22info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:18:33Zoai:ri.conicet.gov.ar:11336/227652instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:18:34.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens |
| title |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens |
| spellingShingle |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens Alvarez, Verónica Elizabeth ACINETOBACTER BAUMANNII BIOMARKERS ESKAPE PATHOGENS GC1 HIGH-RISK CLONES MACHINE LEARNING METABOLIC FITNESS PCR |
| title_short |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens |
| title_full |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens |
| title_fullStr |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens |
| title_full_unstemmed |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens |
| title_sort |
Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens |
| dc.creator.none.fl_str_mv |
Alvarez, Verónica Elizabeth Quiroga, María Paula Centrón, Daniela |
| author |
Alvarez, Verónica Elizabeth |
| author_facet |
Alvarez, Verónica Elizabeth Quiroga, María Paula Centrón, Daniela |
| author_role |
author |
| author2 |
Quiroga, María Paula Centrón, Daniela |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ACINETOBACTER BAUMANNII BIOMARKERS ESKAPE PATHOGENS GC1 HIGH-RISK CLONES MACHINE LEARNING METABOLIC FITNESS PCR |
| topic |
ACINETOBACTER BAUMANNII BIOMARKERS ESKAPE PATHOGENS GC1 HIGH-RISK CLONES MACHINE LEARNING METABOLIC FITNESS PCR |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites. Fil: Alvarez, Verónica Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina Fil: Quiroga, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina Fil: Centrón, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina |
| description |
Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227652 Alvarez, Verónica Elizabeth; Quiroga, María Paula; Centrón, Daniela; Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens; American Society for Microbiology; mSystems; 8; 3; 2-2023; 1-20 2379-5077 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/227652 |
| identifier_str_mv |
Alvarez, Verónica Elizabeth; Quiroga, María Paula; Centrón, Daniela; Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens; American Society for Microbiology; mSystems; 8; 3; 2-2023; 1-20 2379-5077 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1128/msystems.00734-22 info:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/msystems.00734-22 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Society for Microbiology |
| publisher.none.fl_str_mv |
American Society for Microbiology |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781650456805376 |
| score |
12.982451 |