Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers
- Autores
- Zucchi, Ileana Alicia; Hoppe, Cristina Elena; Galante, Maria Jose; Williams, Roberto Juan Jose; López Quintela, M.A.; Mat?jka, L.; Slouf, M.; Ple?til, J.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The self-assembly of inorganic nanoparticles (NPs) into hierarchical structures on different length scales is one of the main aspects of "bottom-up" approaches to create materials with specific electronic, optical, or magnetic properties. We report a new procedure to generate and stabilize colloidal crystals formed by gold NPs during a polymerization reaction, leading to an amphiphilic physical gel. Dodecanethiol-stabilized gold NPs with an average diameter of 2 nm were synthesized and dissolved (0.15 wt %) in a stoichiometric mixture of diglycidylether of bisphenol A (DGEBA) and dodecylamine (DA). The polymerization of DGEBA with DA was carried out at 100°C leading to a linear polymer that very slowly generated an amphiphilic physical gel by the self-assembly of dodecyl chains. The formation of the physical gel was followed by rheometry and its structure investigated by SAXS. In the course of this polymerization, gold NPs were phase-separated generating colloidal crystals with dimensions varying from tens to hundreds of nanometers (TEM) and exhibiting a 3D hexagonal close-packed (HCP) structure (SAXS). The size of the gold NPs forming the colloidal crystals was about twice the original size, meaning that a coalescence process took place. This was confirmed by the increase in the intensity of the plasmon band in UV-visible absorption spectra. Partitioning and irreversible adsorption of large colloidal particles at the air-polymer interface were observed, leading to highly ramified fractal structures. This was explained by the high energy needed to remove large colloidal particles attached at the interface. The polymer precursors used in the present study may, in principle, be employed for different kinds of NPs stabilized by hydrophobic chains to generate dispersions of colloidal crystals in polymer gels or percolating fractal structures at the air-polymer interface. © 2008 American Chemical Society.
Fil: Zucchi, Ileana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Hoppe, Cristina Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad de Santiago de Compostela; España
Fil: Galante, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: López Quintela, M.A.. Universidad de Santiago de Compostela; España
Fil: Mat?jka, L.. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa
Fil: Slouf, M.. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa
Fil: Ple?til, J.. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa - Materia
-
ELATOL
ISOOBTUSOL
SESQUITERPENES
SYNTHESIS
CYTOTOXIC ACTIVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67782
Ver los metadatos del registro completo
id |
CONICETDig_431c520a6aa52052f235d5d7bd4fba02 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67782 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomersZucchi, Ileana AliciaHoppe, Cristina ElenaGalante, Maria JoseWilliams, Roberto Juan JoseLópez Quintela, M.A.Mat?jka, L.Slouf, M.Ple?til, J.ELATOLISOOBTUSOLSESQUITERPENESSYNTHESISCYTOTOXIC ACTIVITYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The self-assembly of inorganic nanoparticles (NPs) into hierarchical structures on different length scales is one of the main aspects of "bottom-up" approaches to create materials with specific electronic, optical, or magnetic properties. We report a new procedure to generate and stabilize colloidal crystals formed by gold NPs during a polymerization reaction, leading to an amphiphilic physical gel. Dodecanethiol-stabilized gold NPs with an average diameter of 2 nm were synthesized and dissolved (0.15 wt %) in a stoichiometric mixture of diglycidylether of bisphenol A (DGEBA) and dodecylamine (DA). The polymerization of DGEBA with DA was carried out at 100°C leading to a linear polymer that very slowly generated an amphiphilic physical gel by the self-assembly of dodecyl chains. The formation of the physical gel was followed by rheometry and its structure investigated by SAXS. In the course of this polymerization, gold NPs were phase-separated generating colloidal crystals with dimensions varying from tens to hundreds of nanometers (TEM) and exhibiting a 3D hexagonal close-packed (HCP) structure (SAXS). The size of the gold NPs forming the colloidal crystals was about twice the original size, meaning that a coalescence process took place. This was confirmed by the increase in the intensity of the plasmon band in UV-visible absorption spectra. Partitioning and irreversible adsorption of large colloidal particles at the air-polymer interface were observed, leading to highly ramified fractal structures. This was explained by the high energy needed to remove large colloidal particles attached at the interface. The polymer precursors used in the present study may, in principle, be employed for different kinds of NPs stabilized by hydrophobic chains to generate dispersions of colloidal crystals in polymer gels or percolating fractal structures at the air-polymer interface. © 2008 American Chemical Society.Fil: Zucchi, Ileana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Hoppe, Cristina Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad de Santiago de Compostela; EspañaFil: Galante, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: López Quintela, M.A.. Universidad de Santiago de Compostela; EspañaFil: Mat?jka, L.. Biology Centre of the Academy of Sciences of the Czech Republic; República ChecaFil: Slouf, M.. Biology Centre of the Academy of Sciences of the Czech Republic; República ChecaFil: Ple?til, J.. Biology Centre of the Academy of Sciences of the Czech Republic; República ChecaAmerican Chemical Society2008-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67782Zucchi, Ileana Alicia; Hoppe, Cristina Elena; Galante, Maria Jose; Williams, Roberto Juan Jose; López Quintela, M.A.; et al.; Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers; American Chemical Society; Macromolecules; 41; 13; 7-2008; 4895-49030024-9297CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ma800457winfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ma800457winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:04Zoai:ri.conicet.gov.ar:11336/67782instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:04.768CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers |
title |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers |
spellingShingle |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers Zucchi, Ileana Alicia ELATOL ISOOBTUSOL SESQUITERPENES SYNTHESIS CYTOTOXIC ACTIVITY |
title_short |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers |
title_full |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers |
title_fullStr |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers |
title_full_unstemmed |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers |
title_sort |
Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers |
dc.creator.none.fl_str_mv |
Zucchi, Ileana Alicia Hoppe, Cristina Elena Galante, Maria Jose Williams, Roberto Juan Jose López Quintela, M.A. Mat?jka, L. Slouf, M. Ple?til, J. |
author |
Zucchi, Ileana Alicia |
author_facet |
Zucchi, Ileana Alicia Hoppe, Cristina Elena Galante, Maria Jose Williams, Roberto Juan Jose López Quintela, M.A. Mat?jka, L. Slouf, M. Ple?til, J. |
author_role |
author |
author2 |
Hoppe, Cristina Elena Galante, Maria Jose Williams, Roberto Juan Jose López Quintela, M.A. Mat?jka, L. Slouf, M. Ple?til, J. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
ELATOL ISOOBTUSOL SESQUITERPENES SYNTHESIS CYTOTOXIC ACTIVITY |
topic |
ELATOL ISOOBTUSOL SESQUITERPENES SYNTHESIS CYTOTOXIC ACTIVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The self-assembly of inorganic nanoparticles (NPs) into hierarchical structures on different length scales is one of the main aspects of "bottom-up" approaches to create materials with specific electronic, optical, or magnetic properties. We report a new procedure to generate and stabilize colloidal crystals formed by gold NPs during a polymerization reaction, leading to an amphiphilic physical gel. Dodecanethiol-stabilized gold NPs with an average diameter of 2 nm were synthesized and dissolved (0.15 wt %) in a stoichiometric mixture of diglycidylether of bisphenol A (DGEBA) and dodecylamine (DA). The polymerization of DGEBA with DA was carried out at 100°C leading to a linear polymer that very slowly generated an amphiphilic physical gel by the self-assembly of dodecyl chains. The formation of the physical gel was followed by rheometry and its structure investigated by SAXS. In the course of this polymerization, gold NPs were phase-separated generating colloidal crystals with dimensions varying from tens to hundreds of nanometers (TEM) and exhibiting a 3D hexagonal close-packed (HCP) structure (SAXS). The size of the gold NPs forming the colloidal crystals was about twice the original size, meaning that a coalescence process took place. This was confirmed by the increase in the intensity of the plasmon band in UV-visible absorption spectra. Partitioning and irreversible adsorption of large colloidal particles at the air-polymer interface were observed, leading to highly ramified fractal structures. This was explained by the high energy needed to remove large colloidal particles attached at the interface. The polymer precursors used in the present study may, in principle, be employed for different kinds of NPs stabilized by hydrophobic chains to generate dispersions of colloidal crystals in polymer gels or percolating fractal structures at the air-polymer interface. © 2008 American Chemical Society. Fil: Zucchi, Ileana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Hoppe, Cristina Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad de Santiago de Compostela; España Fil: Galante, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Williams, Roberto Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: López Quintela, M.A.. Universidad de Santiago de Compostela; España Fil: Mat?jka, L.. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa Fil: Slouf, M.. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa Fil: Ple?til, J.. Biology Centre of the Academy of Sciences of the Czech Republic; República Checa |
description |
The self-assembly of inorganic nanoparticles (NPs) into hierarchical structures on different length scales is one of the main aspects of "bottom-up" approaches to create materials with specific electronic, optical, or magnetic properties. We report a new procedure to generate and stabilize colloidal crystals formed by gold NPs during a polymerization reaction, leading to an amphiphilic physical gel. Dodecanethiol-stabilized gold NPs with an average diameter of 2 nm were synthesized and dissolved (0.15 wt %) in a stoichiometric mixture of diglycidylether of bisphenol A (DGEBA) and dodecylamine (DA). The polymerization of DGEBA with DA was carried out at 100°C leading to a linear polymer that very slowly generated an amphiphilic physical gel by the self-assembly of dodecyl chains. The formation of the physical gel was followed by rheometry and its structure investigated by SAXS. In the course of this polymerization, gold NPs were phase-separated generating colloidal crystals with dimensions varying from tens to hundreds of nanometers (TEM) and exhibiting a 3D hexagonal close-packed (HCP) structure (SAXS). The size of the gold NPs forming the colloidal crystals was about twice the original size, meaning that a coalescence process took place. This was confirmed by the increase in the intensity of the plasmon band in UV-visible absorption spectra. Partitioning and irreversible adsorption of large colloidal particles at the air-polymer interface were observed, leading to highly ramified fractal structures. This was explained by the high energy needed to remove large colloidal particles attached at the interface. The polymer precursors used in the present study may, in principle, be employed for different kinds of NPs stabilized by hydrophobic chains to generate dispersions of colloidal crystals in polymer gels or percolating fractal structures at the air-polymer interface. © 2008 American Chemical Society. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67782 Zucchi, Ileana Alicia; Hoppe, Cristina Elena; Galante, Maria Jose; Williams, Roberto Juan Jose; López Quintela, M.A.; et al.; Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers; American Chemical Society; Macromolecules; 41; 13; 7-2008; 4895-4903 0024-9297 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67782 |
identifier_str_mv |
Zucchi, Ileana Alicia; Hoppe, Cristina Elena; Galante, Maria Jose; Williams, Roberto Juan Jose; López Quintela, M.A.; et al.; Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers; American Chemical Society; Macromolecules; 41; 13; 7-2008; 4895-4903 0024-9297 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ma800457w info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ma800457w |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269735305084928 |
score |
13.13397 |