Independent sets from an algebraic perspective
- Autores
- Dickenstein, Alicia Marcela; Tobis, Enrique Augusto
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the basic problem of counting independent sets in a graph and, in particular, the problem of counting antichains in a finite poset, from an algebraic perspective. We show that neither independence polynomials of bipartite Cohen–Macaulay graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersections ideals, can be evaluated in polynomial time, unless #P = P. Moreover, we present a family of radical zero-dimensional complete intersection ideals JP associated to a finite poset P, for which we describe a universal Gröbner basis. This implies that the bottleneck in computing the dimension of the quotient by JP (that is, the number of zeros of JP) using Gröbner methods lies in the description of the standard monomials.
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tobis, Enrique Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Ideal
Hilbert Function
Polynomial Time
Groebner Basis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19930
Ver los metadatos del registro completo
id |
CONICETDig_42b08fd0d3dc2c751accb6ded0c6917f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19930 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Independent sets from an algebraic perspectiveDickenstein, Alicia MarcelaTobis, Enrique AugustoIdealHilbert FunctionPolynomial TimeGroebner Basishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the basic problem of counting independent sets in a graph and, in particular, the problem of counting antichains in a finite poset, from an algebraic perspective. We show that neither independence polynomials of bipartite Cohen–Macaulay graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersections ideals, can be evaluated in polynomial time, unless #P = P. Moreover, we present a family of radical zero-dimensional complete intersection ideals JP associated to a finite poset P, for which we describe a universal Gröbner basis. This implies that the bottleneck in computing the dimension of the quotient by JP (that is, the number of zeros of JP) using Gröbner methods lies in the description of the standard monomials.Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tobis, Enrique Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWorld Scientific2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19930Dickenstein, Alicia Marcela; Tobis, Enrique Augusto; Independent sets from an algebraic perspective; World Scientific; International Journal of Algebra and Computation; 22; 2; 3-2012; 14-290218-19671793-6500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218196711006819info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218196711006819info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.3508info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:32Zoai:ri.conicet.gov.ar:11336/19930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:32.638CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Independent sets from an algebraic perspective |
title |
Independent sets from an algebraic perspective |
spellingShingle |
Independent sets from an algebraic perspective Dickenstein, Alicia Marcela Ideal Hilbert Function Polynomial Time Groebner Basis |
title_short |
Independent sets from an algebraic perspective |
title_full |
Independent sets from an algebraic perspective |
title_fullStr |
Independent sets from an algebraic perspective |
title_full_unstemmed |
Independent sets from an algebraic perspective |
title_sort |
Independent sets from an algebraic perspective |
dc.creator.none.fl_str_mv |
Dickenstein, Alicia Marcela Tobis, Enrique Augusto |
author |
Dickenstein, Alicia Marcela |
author_facet |
Dickenstein, Alicia Marcela Tobis, Enrique Augusto |
author_role |
author |
author2 |
Tobis, Enrique Augusto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ideal Hilbert Function Polynomial Time Groebner Basis |
topic |
Ideal Hilbert Function Polynomial Time Groebner Basis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we study the basic problem of counting independent sets in a graph and, in particular, the problem of counting antichains in a finite poset, from an algebraic perspective. We show that neither independence polynomials of bipartite Cohen–Macaulay graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersections ideals, can be evaluated in polynomial time, unless #P = P. Moreover, we present a family of radical zero-dimensional complete intersection ideals JP associated to a finite poset P, for which we describe a universal Gröbner basis. This implies that the bottleneck in computing the dimension of the quotient by JP (that is, the number of zeros of JP) using Gröbner methods lies in the description of the standard monomials. Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tobis, Enrique Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper, we study the basic problem of counting independent sets in a graph and, in particular, the problem of counting antichains in a finite poset, from an algebraic perspective. We show that neither independence polynomials of bipartite Cohen–Macaulay graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersections ideals, can be evaluated in polynomial time, unless #P = P. Moreover, we present a family of radical zero-dimensional complete intersection ideals JP associated to a finite poset P, for which we describe a universal Gröbner basis. This implies that the bottleneck in computing the dimension of the quotient by JP (that is, the number of zeros of JP) using Gröbner methods lies in the description of the standard monomials. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19930 Dickenstein, Alicia Marcela; Tobis, Enrique Augusto; Independent sets from an algebraic perspective; World Scientific; International Journal of Algebra and Computation; 22; 2; 3-2012; 14-29 0218-1967 1793-6500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19930 |
identifier_str_mv |
Dickenstein, Alicia Marcela; Tobis, Enrique Augusto; Independent sets from an algebraic perspective; World Scientific; International Journal of Algebra and Computation; 22; 2; 3-2012; 14-29 0218-1967 1793-6500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218196711006819 info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218196711006819 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.3508 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269702574833664 |
score |
13.13397 |