Quantification of ventricular repolarization dispersion using digital processing of the surface ECG

Autores
Vinzio Maggio, Ana Cecilia; Bonomini, Maria Paula; Laciar Leber, Eric; Arini, Pedro David
Año de publicación
2011
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Digital processing of electrocardiographic records was one of the first applications of signal processing on medicine. There are many ways to analyze and study electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved. One aim of digital processing of ECG signals has been quantification of ventricular repolarization dispersion (VRD), phenomenon which mainly is determined by heterogeneity of action potential durations (APD) in different myocardial regions. The APD differs not only between myocytes of apex and the base of both ventricles, but those of endocardial and epicardial surfaces (transmural dispersion) and between both ventricles. Also, it was demonstrated that several electrophysiologically and functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M cells. The APD inequalities develop global and/or local voltage gradients that play an important role in the inscription of ECG T-wave morphology. In this way, we can assume that T-wave is a direct expression of ventricular repolarization inhomogeneities on surface ECG. Experimental and clinical studies have demonstrated a relationship between VRD and severe ventricular arrhythmias. In addition, patients having increased VRD values have a higher risk of developing reentrant arrhythmias. Frequently the heart answer to several pathological states produced an increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) and/or sudden cardiac death (SCD). Moreover, it has been showed that the underlying mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. These cardiac alterations could presented ischemia, hypothermia, electrolyte imbalance, long QT syndrome, autonomic system effects and others. Digital processing of ECG has been proved to be useful for cardiac risk assessment, with additional advantages like of being non invasive treatments and applicable to the general population. With the aim to identify high cardiac risk patients, the researchers have been tried to quantify the VRD with different parameters obtained by mathematic-computational processing of the surface ECG. These parameters are based in detecting changes of T-wave intervals and T-wave morphology during cardiac pathologies, linking these changes with VRD. In this chapter, we have presented a review of VRD indexes based on digital processing of ECG signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, such as: QT interval dispersion, QT interval variability and T-wave duration, are described. In Section 4, different repolarization indexes describing T-wave morphology and energy are examined, including complexity of repolarization, T-wave residuum, angle between the depolarization and repolarization dominant vectors, micro T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in Section 5 conclusions are presented.
Fil: Vinzio Maggio, Ana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; Argentina
Fil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
ECG
VENTRICULAR REPOLARIZATION DISPERSION
DIGITAL SIGNAL PROCESSING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/109677

id CONICETDig_41c08fd37fd8e8f6a410cd8a9bb61071
oai_identifier_str oai:ri.conicet.gov.ar:11336/109677
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantification of ventricular repolarization dispersion using digital processing of the surface ECGVinzio Maggio, Ana CeciliaBonomini, Maria PaulaLaciar Leber, EricArini, Pedro DavidECGVENTRICULAR REPOLARIZATION DISPERSIONDIGITAL SIGNAL PROCESSINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Digital processing of electrocardiographic records was one of the first applications of signal processing on medicine. There are many ways to analyze and study electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved. One aim of digital processing of ECG signals has been quantification of ventricular repolarization dispersion (VRD), phenomenon which mainly is determined by heterogeneity of action potential durations (APD) in different myocardial regions. The APD differs not only between myocytes of apex and the base of both ventricles, but those of endocardial and epicardial surfaces (transmural dispersion) and between both ventricles. Also, it was demonstrated that several electrophysiologically and functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M cells. The APD inequalities develop global and/or local voltage gradients that play an important role in the inscription of ECG T-wave morphology. In this way, we can assume that T-wave is a direct expression of ventricular repolarization inhomogeneities on surface ECG. Experimental and clinical studies have demonstrated a relationship between VRD and severe ventricular arrhythmias. In addition, patients having increased VRD values have a higher risk of developing reentrant arrhythmias. Frequently the heart answer to several pathological states produced an increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) and/or sudden cardiac death (SCD). Moreover, it has been showed that the underlying mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. These cardiac alterations could presented ischemia, hypothermia, electrolyte imbalance, long QT syndrome, autonomic system effects and others. Digital processing of ECG has been proved to be useful for cardiac risk assessment, with additional advantages like of being non invasive treatments and applicable to the general population. With the aim to identify high cardiac risk patients, the researchers have been tried to quantify the VRD with different parameters obtained by mathematic-computational processing of the surface ECG. These parameters are based in detecting changes of T-wave intervals and T-wave morphology during cardiac pathologies, linking these changes with VRD. In this chapter, we have presented a review of VRD indexes based on digital processing of ECG signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, such as: QT interval dispersion, QT interval variability and T-wave duration, are described. In Section 4, different repolarization indexes describing T-wave morphology and energy are examined, including complexity of repolarization, T-wave residuum, angle between the depolarization and repolarization dominant vectors, micro T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in Section 5 conclusions are presented.Fil: Vinzio Maggio, Ana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; ArgentinaFil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaIntechOpenMillis, Richard2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109677Vinzio Maggio, Ana Cecilia; Bonomini, Maria Paula; Laciar Leber, Eric; Arini, Pedro David; Quantification of ventricular repolarization dispersion using digital processing of the surface ECG; IntechOpen; 1; 2011; 181-206978-953-307-923-3CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5772/23050info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/advances-in-electrocardiograms-methods-and-analysis/quantification-of-cardiac-ventricular-repolarization-dispersion-using-computarized-ecg-info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:33Zoai:ri.conicet.gov.ar:11336/109677instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:33.424CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
title Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
spellingShingle Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
Vinzio Maggio, Ana Cecilia
ECG
VENTRICULAR REPOLARIZATION DISPERSION
DIGITAL SIGNAL PROCESSING
title_short Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
title_full Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
title_fullStr Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
title_full_unstemmed Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
title_sort Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
dc.creator.none.fl_str_mv Vinzio Maggio, Ana Cecilia
Bonomini, Maria Paula
Laciar Leber, Eric
Arini, Pedro David
author Vinzio Maggio, Ana Cecilia
author_facet Vinzio Maggio, Ana Cecilia
Bonomini, Maria Paula
Laciar Leber, Eric
Arini, Pedro David
author_role author
author2 Bonomini, Maria Paula
Laciar Leber, Eric
Arini, Pedro David
author2_role author
author
author
dc.contributor.none.fl_str_mv Millis, Richard
dc.subject.none.fl_str_mv ECG
VENTRICULAR REPOLARIZATION DISPERSION
DIGITAL SIGNAL PROCESSING
topic ECG
VENTRICULAR REPOLARIZATION DISPERSION
DIGITAL SIGNAL PROCESSING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Digital processing of electrocardiographic records was one of the first applications of signal processing on medicine. There are many ways to analyze and study electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved. One aim of digital processing of ECG signals has been quantification of ventricular repolarization dispersion (VRD), phenomenon which mainly is determined by heterogeneity of action potential durations (APD) in different myocardial regions. The APD differs not only between myocytes of apex and the base of both ventricles, but those of endocardial and epicardial surfaces (transmural dispersion) and between both ventricles. Also, it was demonstrated that several electrophysiologically and functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M cells. The APD inequalities develop global and/or local voltage gradients that play an important role in the inscription of ECG T-wave morphology. In this way, we can assume that T-wave is a direct expression of ventricular repolarization inhomogeneities on surface ECG. Experimental and clinical studies have demonstrated a relationship between VRD and severe ventricular arrhythmias. In addition, patients having increased VRD values have a higher risk of developing reentrant arrhythmias. Frequently the heart answer to several pathological states produced an increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) and/or sudden cardiac death (SCD). Moreover, it has been showed that the underlying mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. These cardiac alterations could presented ischemia, hypothermia, electrolyte imbalance, long QT syndrome, autonomic system effects and others. Digital processing of ECG has been proved to be useful for cardiac risk assessment, with additional advantages like of being non invasive treatments and applicable to the general population. With the aim to identify high cardiac risk patients, the researchers have been tried to quantify the VRD with different parameters obtained by mathematic-computational processing of the surface ECG. These parameters are based in detecting changes of T-wave intervals and T-wave morphology during cardiac pathologies, linking these changes with VRD. In this chapter, we have presented a review of VRD indexes based on digital processing of ECG signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, such as: QT interval dispersion, QT interval variability and T-wave duration, are described. In Section 4, different repolarization indexes describing T-wave morphology and energy are examined, including complexity of repolarization, T-wave residuum, angle between the depolarization and repolarization dominant vectors, micro T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in Section 5 conclusions are presented.
Fil: Vinzio Maggio, Ana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; Argentina
Fil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Digital processing of electrocardiographic records was one of the first applications of signal processing on medicine. There are many ways to analyze and study electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved. One aim of digital processing of ECG signals has been quantification of ventricular repolarization dispersion (VRD), phenomenon which mainly is determined by heterogeneity of action potential durations (APD) in different myocardial regions. The APD differs not only between myocytes of apex and the base of both ventricles, but those of endocardial and epicardial surfaces (transmural dispersion) and between both ventricles. Also, it was demonstrated that several electrophysiologically and functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M cells. The APD inequalities develop global and/or local voltage gradients that play an important role in the inscription of ECG T-wave morphology. In this way, we can assume that T-wave is a direct expression of ventricular repolarization inhomogeneities on surface ECG. Experimental and clinical studies have demonstrated a relationship between VRD and severe ventricular arrhythmias. In addition, patients having increased VRD values have a higher risk of developing reentrant arrhythmias. Frequently the heart answer to several pathological states produced an increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) and/or sudden cardiac death (SCD). Moreover, it has been showed that the underlying mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. These cardiac alterations could presented ischemia, hypothermia, electrolyte imbalance, long QT syndrome, autonomic system effects and others. Digital processing of ECG has been proved to be useful for cardiac risk assessment, with additional advantages like of being non invasive treatments and applicable to the general population. With the aim to identify high cardiac risk patients, the researchers have been tried to quantify the VRD with different parameters obtained by mathematic-computational processing of the surface ECG. These parameters are based in detecting changes of T-wave intervals and T-wave morphology during cardiac pathologies, linking these changes with VRD. In this chapter, we have presented a review of VRD indexes based on digital processing of ECG signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, such as: QT interval dispersion, QT interval variability and T-wave duration, are described. In Section 4, different repolarization indexes describing T-wave morphology and energy are examined, including complexity of repolarization, T-wave residuum, angle between the depolarization and repolarization dominant vectors, micro T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in Section 5 conclusions are presented.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/109677
Vinzio Maggio, Ana Cecilia; Bonomini, Maria Paula; Laciar Leber, Eric; Arini, Pedro David; Quantification of ventricular repolarization dispersion using digital processing of the surface ECG; IntechOpen; 1; 2011; 181-206
978-953-307-923-3
CONICET Digital
CONICET
url http://hdl.handle.net/11336/109677
identifier_str_mv Vinzio Maggio, Ana Cecilia; Bonomini, Maria Paula; Laciar Leber, Eric; Arini, Pedro David; Quantification of ventricular repolarization dispersion using digital processing of the surface ECG; IntechOpen; 1; 2011; 181-206
978-953-307-923-3
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5772/23050
info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/advances-in-electrocardiograms-methods-and-analysis/quantification-of-cardiac-ventricular-repolarization-dispersion-using-computarized-ecg-
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IntechOpen
publisher.none.fl_str_mv IntechOpen
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613611739152384
score 13.070432