Quantification of ventricular repolarization dispersion using digital processing of the surface ECG
- Autores
- Vinzio Maggio, Ana Cecilia; Bonomini, Maria Paula; Laciar Leber, Eric; Arini, Pedro David
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Digital processing of electrocardiographic records was one of the first applications of signal processing on medicine. There are many ways to analyze and study electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved. One aim of digital processing of ECG signals has been quantification of ventricular repolarization dispersion (VRD), phenomenon which mainly is determined by heterogeneity of action potential durations (APD) in different myocardial regions. The APD differs not only between myocytes of apex and the base of both ventricles, but those of endocardial and epicardial surfaces (transmural dispersion) and between both ventricles. Also, it was demonstrated that several electrophysiologically and functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M cells. The APD inequalities develop global and/or local voltage gradients that play an important role in the inscription of ECG T-wave morphology. In this way, we can assume that T-wave is a direct expression of ventricular repolarization inhomogeneities on surface ECG. Experimental and clinical studies have demonstrated a relationship between VRD and severe ventricular arrhythmias. In addition, patients having increased VRD values have a higher risk of developing reentrant arrhythmias. Frequently the heart answer to several pathological states produced an increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) and/or sudden cardiac death (SCD). Moreover, it has been showed that the underlying mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. These cardiac alterations could presented ischemia, hypothermia, electrolyte imbalance, long QT syndrome, autonomic system effects and others. Digital processing of ECG has been proved to be useful for cardiac risk assessment, with additional advantages like of being non invasive treatments and applicable to the general population. With the aim to identify high cardiac risk patients, the researchers have been tried to quantify the VRD with different parameters obtained by mathematic-computational processing of the surface ECG. These parameters are based in detecting changes of T-wave intervals and T-wave morphology during cardiac pathologies, linking these changes with VRD. In this chapter, we have presented a review of VRD indexes based on digital processing of ECG signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, such as: QT interval dispersion, QT interval variability and T-wave duration, are described. In Section 4, different repolarization indexes describing T-wave morphology and energy are examined, including complexity of repolarization, T-wave residuum, angle between the depolarization and repolarization dominant vectors, micro T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in Section 5 conclusions are presented.
Fil: Vinzio Maggio, Ana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; Argentina
Fil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
ECG
VENTRICULAR REPOLARIZATION DISPERSION
DIGITAL SIGNAL PROCESSING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109677
Ver los metadatos del registro completo
id |
CONICETDig_41c08fd37fd8e8f6a410cd8a9bb61071 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109677 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECGVinzio Maggio, Ana CeciliaBonomini, Maria PaulaLaciar Leber, EricArini, Pedro DavidECGVENTRICULAR REPOLARIZATION DISPERSIONDIGITAL SIGNAL PROCESSINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Digital processing of electrocardiographic records was one of the first applications of signal processing on medicine. There are many ways to analyze and study electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved. One aim of digital processing of ECG signals has been quantification of ventricular repolarization dispersion (VRD), phenomenon which mainly is determined by heterogeneity of action potential durations (APD) in different myocardial regions. The APD differs not only between myocytes of apex and the base of both ventricles, but those of endocardial and epicardial surfaces (transmural dispersion) and between both ventricles. Also, it was demonstrated that several electrophysiologically and functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M cells. The APD inequalities develop global and/or local voltage gradients that play an important role in the inscription of ECG T-wave morphology. In this way, we can assume that T-wave is a direct expression of ventricular repolarization inhomogeneities on surface ECG. Experimental and clinical studies have demonstrated a relationship between VRD and severe ventricular arrhythmias. In addition, patients having increased VRD values have a higher risk of developing reentrant arrhythmias. Frequently the heart answer to several pathological states produced an increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) and/or sudden cardiac death (SCD). Moreover, it has been showed that the underlying mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. These cardiac alterations could presented ischemia, hypothermia, electrolyte imbalance, long QT syndrome, autonomic system effects and others. Digital processing of ECG has been proved to be useful for cardiac risk assessment, with additional advantages like of being non invasive treatments and applicable to the general population. With the aim to identify high cardiac risk patients, the researchers have been tried to quantify the VRD with different parameters obtained by mathematic-computational processing of the surface ECG. These parameters are based in detecting changes of T-wave intervals and T-wave morphology during cardiac pathologies, linking these changes with VRD. In this chapter, we have presented a review of VRD indexes based on digital processing of ECG signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, such as: QT interval dispersion, QT interval variability and T-wave duration, are described. In Section 4, different repolarization indexes describing T-wave morphology and energy are examined, including complexity of repolarization, T-wave residuum, angle between the depolarization and repolarization dominant vectors, micro T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in Section 5 conclusions are presented.Fil: Vinzio Maggio, Ana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; ArgentinaFil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaIntechOpenMillis, Richard2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109677Vinzio Maggio, Ana Cecilia; Bonomini, Maria Paula; Laciar Leber, Eric; Arini, Pedro David; Quantification of ventricular repolarization dispersion using digital processing of the surface ECG; IntechOpen; 1; 2011; 181-206978-953-307-923-3CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5772/23050info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/advances-in-electrocardiograms-methods-and-analysis/quantification-of-cardiac-ventricular-repolarization-dispersion-using-computarized-ecg-info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:33Zoai:ri.conicet.gov.ar:11336/109677instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:33.424CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECG |
title |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECG |
spellingShingle |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECG Vinzio Maggio, Ana Cecilia ECG VENTRICULAR REPOLARIZATION DISPERSION DIGITAL SIGNAL PROCESSING |
title_short |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECG |
title_full |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECG |
title_fullStr |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECG |
title_full_unstemmed |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECG |
title_sort |
Quantification of ventricular repolarization dispersion using digital processing of the surface ECG |
dc.creator.none.fl_str_mv |
Vinzio Maggio, Ana Cecilia Bonomini, Maria Paula Laciar Leber, Eric Arini, Pedro David |
author |
Vinzio Maggio, Ana Cecilia |
author_facet |
Vinzio Maggio, Ana Cecilia Bonomini, Maria Paula Laciar Leber, Eric Arini, Pedro David |
author_role |
author |
author2 |
Bonomini, Maria Paula Laciar Leber, Eric Arini, Pedro David |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Millis, Richard |
dc.subject.none.fl_str_mv |
ECG VENTRICULAR REPOLARIZATION DISPERSION DIGITAL SIGNAL PROCESSING |
topic |
ECG VENTRICULAR REPOLARIZATION DISPERSION DIGITAL SIGNAL PROCESSING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Digital processing of electrocardiographic records was one of the first applications of signal processing on medicine. There are many ways to analyze and study electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved. One aim of digital processing of ECG signals has been quantification of ventricular repolarization dispersion (VRD), phenomenon which mainly is determined by heterogeneity of action potential durations (APD) in different myocardial regions. The APD differs not only between myocytes of apex and the base of both ventricles, but those of endocardial and epicardial surfaces (transmural dispersion) and between both ventricles. Also, it was demonstrated that several electrophysiologically and functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M cells. The APD inequalities develop global and/or local voltage gradients that play an important role in the inscription of ECG T-wave morphology. In this way, we can assume that T-wave is a direct expression of ventricular repolarization inhomogeneities on surface ECG. Experimental and clinical studies have demonstrated a relationship between VRD and severe ventricular arrhythmias. In addition, patients having increased VRD values have a higher risk of developing reentrant arrhythmias. Frequently the heart answer to several pathological states produced an increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) and/or sudden cardiac death (SCD). Moreover, it has been showed that the underlying mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. These cardiac alterations could presented ischemia, hypothermia, electrolyte imbalance, long QT syndrome, autonomic system effects and others. Digital processing of ECG has been proved to be useful for cardiac risk assessment, with additional advantages like of being non invasive treatments and applicable to the general population. With the aim to identify high cardiac risk patients, the researchers have been tried to quantify the VRD with different parameters obtained by mathematic-computational processing of the surface ECG. These parameters are based in detecting changes of T-wave intervals and T-wave morphology during cardiac pathologies, linking these changes with VRD. In this chapter, we have presented a review of VRD indexes based on digital processing of ECG signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, such as: QT interval dispersion, QT interval variability and T-wave duration, are described. In Section 4, different repolarization indexes describing T-wave morphology and energy are examined, including complexity of repolarization, T-wave residuum, angle between the depolarization and repolarization dominant vectors, micro T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in Section 5 conclusions are presented. Fil: Vinzio Maggio, Ana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Bonomini, Maria Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; Argentina Fil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Digital processing of electrocardiographic records was one of the first applications of signal processing on medicine. There are many ways to analyze and study electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved. One aim of digital processing of ECG signals has been quantification of ventricular repolarization dispersion (VRD), phenomenon which mainly is determined by heterogeneity of action potential durations (APD) in different myocardial regions. The APD differs not only between myocytes of apex and the base of both ventricles, but those of endocardial and epicardial surfaces (transmural dispersion) and between both ventricles. Also, it was demonstrated that several electrophysiologically and functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M cells. The APD inequalities develop global and/or local voltage gradients that play an important role in the inscription of ECG T-wave morphology. In this way, we can assume that T-wave is a direct expression of ventricular repolarization inhomogeneities on surface ECG. Experimental and clinical studies have demonstrated a relationship between VRD and severe ventricular arrhythmias. In addition, patients having increased VRD values have a higher risk of developing reentrant arrhythmias. Frequently the heart answer to several pathological states produced an increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) and/or sudden cardiac death (SCD). Moreover, it has been showed that the underlying mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. These cardiac alterations could presented ischemia, hypothermia, electrolyte imbalance, long QT syndrome, autonomic system effects and others. Digital processing of ECG has been proved to be useful for cardiac risk assessment, with additional advantages like of being non invasive treatments and applicable to the general population. With the aim to identify high cardiac risk patients, the researchers have been tried to quantify the VRD with different parameters obtained by mathematic-computational processing of the surface ECG. These parameters are based in detecting changes of T-wave intervals and T-wave morphology during cardiac pathologies, linking these changes with VRD. In this chapter, we have presented a review of VRD indexes based on digital processing of ECG signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, such as: QT interval dispersion, QT interval variability and T-wave duration, are described. In Section 4, different repolarization indexes describing T-wave morphology and energy are examined, including complexity of repolarization, T-wave residuum, angle between the depolarization and repolarization dominant vectors, micro T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in Section 5 conclusions are presented. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bookPart http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
status_str |
publishedVersion |
format |
bookPart |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109677 Vinzio Maggio, Ana Cecilia; Bonomini, Maria Paula; Laciar Leber, Eric; Arini, Pedro David; Quantification of ventricular repolarization dispersion using digital processing of the surface ECG; IntechOpen; 1; 2011; 181-206 978-953-307-923-3 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/109677 |
identifier_str_mv |
Vinzio Maggio, Ana Cecilia; Bonomini, Maria Paula; Laciar Leber, Eric; Arini, Pedro David; Quantification of ventricular repolarization dispersion using digital processing of the surface ECG; IntechOpen; 1; 2011; 181-206 978-953-307-923-3 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5772/23050 info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/advances-in-electrocardiograms-methods-and-analysis/quantification-of-cardiac-ventricular-repolarization-dispersion-using-computarized-ecg- |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IntechOpen |
publisher.none.fl_str_mv |
IntechOpen |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613611739152384 |
score |
13.070432 |