All Near Neighbor GraphWithout Searching
- Autores
- Chávez, Edgar; Ludueña, Verónica; Reyes, Nora Susana; Kasián, Fernando
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a collection of n objects equipped with a distance function d(·, ·), the Nearest Neighbor Graph (NNG) consists in finding the nearest neighbor of each object in the collection. Without an index the total cost of NNG is quadratic. Using an index the cost would be sub-quadratic if the search for individual items is sublinear. Unfortunately, due to the so called curse of dimensionality the indexed and the brute force methods are almost equally inefficient. In this paper we present an efficient algorithm to build the Near Neighbor Graph (nNG), that is an approximation of NNG, using only the index construction, without actually searching for objects.
Facultad de Informática - Materia
-
Ciencias Informáticas
near neighbor graph
proximity search
clustering
metric indexing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/66742
Ver los metadatos del registro completo
id |
SEDICI_6732edc7e03b69ee84e94b70ef8f31bb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/66742 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
All Near Neighbor GraphWithout SearchingChávez, EdgarLudueña, VerónicaReyes, Nora SusanaKasián, FernandoCiencias Informáticasnear neighbor graphproximity searchclusteringmetric indexingGiven a collection of n objects equipped with a distance function d(·, ·), the Nearest Neighbor Graph (NNG) consists in finding the nearest neighbor of each object in the collection. Without an index the total cost of NNG is quadratic. Using an index the cost would be sub-quadratic if the search for individual items is sublinear. Unfortunately, due to the so called curse of dimensionality the indexed and the brute force methods are almost equally inefficient. In this paper we present an efficient algorithm to build the Near Neighbor Graph (nNG), that is an approximation of NNG, using only the index construction, without actually searching for objects.Facultad de Informática2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf61-67http://sedici.unlp.edu.ar/handle/10915/66742enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/695/225info:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e07info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:10:01Zoai:sedici.unlp.edu.ar:10915/66742Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:10:01.438SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
All Near Neighbor GraphWithout Searching |
title |
All Near Neighbor GraphWithout Searching |
spellingShingle |
All Near Neighbor GraphWithout Searching Chávez, Edgar Ciencias Informáticas near neighbor graph proximity search clustering metric indexing |
title_short |
All Near Neighbor GraphWithout Searching |
title_full |
All Near Neighbor GraphWithout Searching |
title_fullStr |
All Near Neighbor GraphWithout Searching |
title_full_unstemmed |
All Near Neighbor GraphWithout Searching |
title_sort |
All Near Neighbor GraphWithout Searching |
dc.creator.none.fl_str_mv |
Chávez, Edgar Ludueña, Verónica Reyes, Nora Susana Kasián, Fernando |
author |
Chávez, Edgar |
author_facet |
Chávez, Edgar Ludueña, Verónica Reyes, Nora Susana Kasián, Fernando |
author_role |
author |
author2 |
Ludueña, Verónica Reyes, Nora Susana Kasián, Fernando |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas near neighbor graph proximity search clustering metric indexing |
topic |
Ciencias Informáticas near neighbor graph proximity search clustering metric indexing |
dc.description.none.fl_txt_mv |
Given a collection of n objects equipped with a distance function d(·, ·), the Nearest Neighbor Graph (NNG) consists in finding the nearest neighbor of each object in the collection. Without an index the total cost of NNG is quadratic. Using an index the cost would be sub-quadratic if the search for individual items is sublinear. Unfortunately, due to the so called curse of dimensionality the indexed and the brute force methods are almost equally inefficient. In this paper we present an efficient algorithm to build the Near Neighbor Graph (nNG), that is an approximation of NNG, using only the index construction, without actually searching for objects. Facultad de Informática |
description |
Given a collection of n objects equipped with a distance function d(·, ·), the Nearest Neighbor Graph (NNG) consists in finding the nearest neighbor of each object in the collection. Without an index the total cost of NNG is quadratic. Using an index the cost would be sub-quadratic if the search for individual items is sublinear. Unfortunately, due to the so called curse of dimensionality the indexed and the brute force methods are almost equally inefficient. In this paper we present an efficient algorithm to build the Near Neighbor Graph (nNG), that is an approximation of NNG, using only the index construction, without actually searching for objects. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/66742 |
url |
http://sedici.unlp.edu.ar/handle/10915/66742 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/695/225 info:eu-repo/semantics/altIdentifier/issn/1666-6038 info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e07 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.format.none.fl_str_mv |
application/pdf 61-67 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615968603504640 |
score |
13.070432 |