Relational databases as a massive information source for defeasible argumentation
- Autores
- Deagustini, Cristhian Ariel David; Fulladoza Dalibón, Santiago Emanuel; Gottifredi, Sebastián; Falappa, Marcelo Alejandro; Chesñevar, Carlos Iván; Simari, Guillermo Ricardo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Argumentation provides a sophisticated yet powerful mechanism for the formalization of commonsense reasoning in knowledge-based systems, with application in many areas of Artificial Intelligence. Nowadays, most argumentation systems build their arguments on the basis of a single, fixed knowledge base, often under the form of a logic program as in Defeasible Logic Programming or in Assumption-Based Argumentation. Currently, adding new information to such programs requires a manual encoding, which is not feasible for many real-world environments which involve large amounts of data, usually conceptualized as relational databases. This paper presents a novel approach to compute arguments from premises obtained from relational databases, identifying several relevant aspects. In our setting, different databases can be updated by external, independent applications, leading to changes in the spectrum of available arguments. We present algorithms for integrating a database management system with an argument-based inference engine. Empirical results and running-time analysis associated with our approach show that it provides a powerful alternative for efficiently achieving massive argumentation, taking advantage of modern DBMS technologies. We contend that our proposal is significant for developing new architectures for knowledge-based applications, such as Decision Support Systems and Recommender Systems, using argumentation as the underlying inference model.
Fil: Deagustini, Cristhian Ariel David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias de la Administración; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fulladoza Dalibón, Santiago Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias de la Administración; Argentina
Fil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
Fil: Falappa, Marcelo Alejandro. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Chesñevar, Carlos Iván. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Simari, Guillermo Ricardo. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Argument-Supporting Data Retrieval
Defeasible Argumentation
Knowledge-Based Systems
Massive Argumentation
Relational Databases - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79056
Ver los metadatos del registro completo
id |
CONICETDig_4141ba9e425505d74d180f306cc45f10 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79056 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Relational databases as a massive information source for defeasible argumentationDeagustini, Cristhian Ariel DavidFulladoza Dalibón, Santiago EmanuelGottifredi, SebastiánFalappa, Marcelo AlejandroChesñevar, Carlos IvánSimari, Guillermo RicardoArgument-Supporting Data RetrievalDefeasible ArgumentationKnowledge-Based SystemsMassive ArgumentationRelational Databaseshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Argumentation provides a sophisticated yet powerful mechanism for the formalization of commonsense reasoning in knowledge-based systems, with application in many areas of Artificial Intelligence. Nowadays, most argumentation systems build their arguments on the basis of a single, fixed knowledge base, often under the form of a logic program as in Defeasible Logic Programming or in Assumption-Based Argumentation. Currently, adding new information to such programs requires a manual encoding, which is not feasible for many real-world environments which involve large amounts of data, usually conceptualized as relational databases. This paper presents a novel approach to compute arguments from premises obtained from relational databases, identifying several relevant aspects. In our setting, different databases can be updated by external, independent applications, leading to changes in the spectrum of available arguments. We present algorithms for integrating a database management system with an argument-based inference engine. Empirical results and running-time analysis associated with our approach show that it provides a powerful alternative for efficiently achieving massive argumentation, taking advantage of modern DBMS technologies. We contend that our proposal is significant for developing new architectures for knowledge-based applications, such as Decision Support Systems and Recommender Systems, using argumentation as the underlying inference model.Fil: Deagustini, Cristhian Ariel David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias de la Administración; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fulladoza Dalibón, Santiago Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias de la Administración; ArgentinaFil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; ArgentinaFil: Falappa, Marcelo Alejandro. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chesñevar, Carlos Iván. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Simari, Guillermo Ricardo. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79056Deagustini, Cristhian Ariel David; Fulladoza Dalibón, Santiago Emanuel; Gottifredi, Sebastián; Falappa, Marcelo Alejandro; Chesñevar, Carlos Iván; et al.; Relational databases as a massive information source for defeasible argumentation; Elsevier Science; Knowledge-Based Systems; 51; 10-2013; 93-1090950-7051CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0950705113002128info:eu-repo/semantics/altIdentifier/doi/10.1016/j.knosys.2013.07.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:48:31Zoai:ri.conicet.gov.ar:11336/79056instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:48:31.347CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Relational databases as a massive information source for defeasible argumentation |
title |
Relational databases as a massive information source for defeasible argumentation |
spellingShingle |
Relational databases as a massive information source for defeasible argumentation Deagustini, Cristhian Ariel David Argument-Supporting Data Retrieval Defeasible Argumentation Knowledge-Based Systems Massive Argumentation Relational Databases |
title_short |
Relational databases as a massive information source for defeasible argumentation |
title_full |
Relational databases as a massive information source for defeasible argumentation |
title_fullStr |
Relational databases as a massive information source for defeasible argumentation |
title_full_unstemmed |
Relational databases as a massive information source for defeasible argumentation |
title_sort |
Relational databases as a massive information source for defeasible argumentation |
dc.creator.none.fl_str_mv |
Deagustini, Cristhian Ariel David Fulladoza Dalibón, Santiago Emanuel Gottifredi, Sebastián Falappa, Marcelo Alejandro Chesñevar, Carlos Iván Simari, Guillermo Ricardo |
author |
Deagustini, Cristhian Ariel David |
author_facet |
Deagustini, Cristhian Ariel David Fulladoza Dalibón, Santiago Emanuel Gottifredi, Sebastián Falappa, Marcelo Alejandro Chesñevar, Carlos Iván Simari, Guillermo Ricardo |
author_role |
author |
author2 |
Fulladoza Dalibón, Santiago Emanuel Gottifredi, Sebastián Falappa, Marcelo Alejandro Chesñevar, Carlos Iván Simari, Guillermo Ricardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Argument-Supporting Data Retrieval Defeasible Argumentation Knowledge-Based Systems Massive Argumentation Relational Databases |
topic |
Argument-Supporting Data Retrieval Defeasible Argumentation Knowledge-Based Systems Massive Argumentation Relational Databases |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Argumentation provides a sophisticated yet powerful mechanism for the formalization of commonsense reasoning in knowledge-based systems, with application in many areas of Artificial Intelligence. Nowadays, most argumentation systems build their arguments on the basis of a single, fixed knowledge base, often under the form of a logic program as in Defeasible Logic Programming or in Assumption-Based Argumentation. Currently, adding new information to such programs requires a manual encoding, which is not feasible for many real-world environments which involve large amounts of data, usually conceptualized as relational databases. This paper presents a novel approach to compute arguments from premises obtained from relational databases, identifying several relevant aspects. In our setting, different databases can be updated by external, independent applications, leading to changes in the spectrum of available arguments. We present algorithms for integrating a database management system with an argument-based inference engine. Empirical results and running-time analysis associated with our approach show that it provides a powerful alternative for efficiently achieving massive argumentation, taking advantage of modern DBMS technologies. We contend that our proposal is significant for developing new architectures for knowledge-based applications, such as Decision Support Systems and Recommender Systems, using argumentation as the underlying inference model. Fil: Deagustini, Cristhian Ariel David. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias de la Administración; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fulladoza Dalibón, Santiago Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias de la Administración; Argentina Fil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina Fil: Falappa, Marcelo Alejandro. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Chesñevar, Carlos Iván. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Simari, Guillermo Ricardo. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Argumentation provides a sophisticated yet powerful mechanism for the formalization of commonsense reasoning in knowledge-based systems, with application in many areas of Artificial Intelligence. Nowadays, most argumentation systems build their arguments on the basis of a single, fixed knowledge base, often under the form of a logic program as in Defeasible Logic Programming or in Assumption-Based Argumentation. Currently, adding new information to such programs requires a manual encoding, which is not feasible for many real-world environments which involve large amounts of data, usually conceptualized as relational databases. This paper presents a novel approach to compute arguments from premises obtained from relational databases, identifying several relevant aspects. In our setting, different databases can be updated by external, independent applications, leading to changes in the spectrum of available arguments. We present algorithms for integrating a database management system with an argument-based inference engine. Empirical results and running-time analysis associated with our approach show that it provides a powerful alternative for efficiently achieving massive argumentation, taking advantage of modern DBMS technologies. We contend that our proposal is significant for developing new architectures for knowledge-based applications, such as Decision Support Systems and Recommender Systems, using argumentation as the underlying inference model. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79056 Deagustini, Cristhian Ariel David; Fulladoza Dalibón, Santiago Emanuel; Gottifredi, Sebastián; Falappa, Marcelo Alejandro; Chesñevar, Carlos Iván; et al.; Relational databases as a massive information source for defeasible argumentation; Elsevier Science; Knowledge-Based Systems; 51; 10-2013; 93-109 0950-7051 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/79056 |
identifier_str_mv |
Deagustini, Cristhian Ariel David; Fulladoza Dalibón, Santiago Emanuel; Gottifredi, Sebastián; Falappa, Marcelo Alejandro; Chesñevar, Carlos Iván; et al.; Relational databases as a massive information source for defeasible argumentation; Elsevier Science; Knowledge-Based Systems; 51; 10-2013; 93-109 0950-7051 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0950705113002128 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.knosys.2013.07.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606833821908992 |
score |
13.001348 |