Boson stars and their relatives in semiclassical gravity
- Autores
- Alcubierre, Miguel; Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez Tejedor, Alberto; Megevand Politano, Miguel Federico; Núñez, Darío; Sarbach, Olivier
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We construct boson star configurations in quantum field theory using the semiclassical gravity approximation. Restricting our attention to the static case, we show that the semiclassical Einstein-Klein-Gordon system for a single real quantum scalar field whose state describes the excitation of N identical particles, each one corresponding to a given energy level, can be reduced to the Einstein-Klein-Gordon system for N complex classical scalar fields. Particular consideration is given to the spherically symmetric static scenario, where energy levels are labeled by quantum numbers n, ℓ, and m. When all particles are accommodated in the ground state n=ℓ=m=0, one recovers the standard static boson star solutions, that can be excited if n≠0. On the other hand, for the case where all particles have fixed radial and total angular momentum numbers n and ℓ, with ℓ≠0, but are homogeneously distributed with respect to their magnetic number m, one obtains the ℓ-boson stars, whereas when ℓ=m=0 and n takes multiple values, the multistate boson star solutions are obtained. Further generalizations of these configurations are presented, including the multi-ℓ multistate boson stars, that constitute the most general solutions to the N-particle, static, spherically symmetric, semiclassical real Einstein-Klein-Gordon system, in which the total number of particles is definite. In spite of the fact that the same spacetime configurations also appear in multifield classical theories, in semiclassical gravity, they arise naturally as the quantum fluctuations associated with the state of a single field describing a many-body system. Our results could have potential impact on direct detection experiments in the context of ultralight scalar field/fuzzy dark matter candidates.
Fil: Alcubierre, Miguel. Universidad Nacional Autónoma de México; México
Fil: Barranco, Juan. Universidad de Guanajuato; México
Fil: Bernal, Argelia. Universidad de Guanajuato; México
Fil: Degollado, Juan Carlos. Universidad Nacional Autónoma de México; México
Fil: Diez Tejedor, Alberto. Universidad de Guanajuato; México
Fil: Megevand Politano, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Núñez, Darío. Universidad Nacional Autónoma de México; México
Fil: Sarbach, Olivier. Universidad Michoacana de San Nicolás de Hidalgo; México - Materia
-
Boson stars
Semiclassical approximation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226575
Ver los metadatos del registro completo
id |
CONICETDig_3f8898966cb515691a9cdb84d442c14c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226575 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Boson stars and their relatives in semiclassical gravityAlcubierre, MiguelBarranco, JuanBernal, ArgeliaDegollado, Juan CarlosDiez Tejedor, AlbertoMegevand Politano, Miguel FedericoNúñez, DaríoSarbach, OlivierBoson starsSemiclassical approximationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We construct boson star configurations in quantum field theory using the semiclassical gravity approximation. Restricting our attention to the static case, we show that the semiclassical Einstein-Klein-Gordon system for a single real quantum scalar field whose state describes the excitation of N identical particles, each one corresponding to a given energy level, can be reduced to the Einstein-Klein-Gordon system for N complex classical scalar fields. Particular consideration is given to the spherically symmetric static scenario, where energy levels are labeled by quantum numbers n, ℓ, and m. When all particles are accommodated in the ground state n=ℓ=m=0, one recovers the standard static boson star solutions, that can be excited if n≠0. On the other hand, for the case where all particles have fixed radial and total angular momentum numbers n and ℓ, with ℓ≠0, but are homogeneously distributed with respect to their magnetic number m, one obtains the ℓ-boson stars, whereas when ℓ=m=0 and n takes multiple values, the multistate boson star solutions are obtained. Further generalizations of these configurations are presented, including the multi-ℓ multistate boson stars, that constitute the most general solutions to the N-particle, static, spherically symmetric, semiclassical real Einstein-Klein-Gordon system, in which the total number of particles is definite. In spite of the fact that the same spacetime configurations also appear in multifield classical theories, in semiclassical gravity, they arise naturally as the quantum fluctuations associated with the state of a single field describing a many-body system. Our results could have potential impact on direct detection experiments in the context of ultralight scalar field/fuzzy dark matter candidates.Fil: Alcubierre, Miguel. Universidad Nacional Autónoma de México; MéxicoFil: Barranco, Juan. Universidad de Guanajuato; MéxicoFil: Bernal, Argelia. Universidad de Guanajuato; MéxicoFil: Degollado, Juan Carlos. Universidad Nacional Autónoma de México; MéxicoFil: Diez Tejedor, Alberto. Universidad de Guanajuato; MéxicoFil: Megevand Politano, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Núñez, Darío. Universidad Nacional Autónoma de México; MéxicoFil: Sarbach, Olivier. Universidad Michoacana de San Nicolás de Hidalgo; MéxicoAmerican Physical Society2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226575Alcubierre, Miguel; Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez Tejedor, Alberto; et al.; Boson stars and their relatives in semiclassical gravity; American Physical Society; Physical Review D; 107; 4; 2-2023; 1-212470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.045017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:46Zoai:ri.conicet.gov.ar:11336/226575instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:46.657CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Boson stars and their relatives in semiclassical gravity |
title |
Boson stars and their relatives in semiclassical gravity |
spellingShingle |
Boson stars and their relatives in semiclassical gravity Alcubierre, Miguel Boson stars Semiclassical approximation |
title_short |
Boson stars and their relatives in semiclassical gravity |
title_full |
Boson stars and their relatives in semiclassical gravity |
title_fullStr |
Boson stars and their relatives in semiclassical gravity |
title_full_unstemmed |
Boson stars and their relatives in semiclassical gravity |
title_sort |
Boson stars and their relatives in semiclassical gravity |
dc.creator.none.fl_str_mv |
Alcubierre, Miguel Barranco, Juan Bernal, Argelia Degollado, Juan Carlos Diez Tejedor, Alberto Megevand Politano, Miguel Federico Núñez, Darío Sarbach, Olivier |
author |
Alcubierre, Miguel |
author_facet |
Alcubierre, Miguel Barranco, Juan Bernal, Argelia Degollado, Juan Carlos Diez Tejedor, Alberto Megevand Politano, Miguel Federico Núñez, Darío Sarbach, Olivier |
author_role |
author |
author2 |
Barranco, Juan Bernal, Argelia Degollado, Juan Carlos Diez Tejedor, Alberto Megevand Politano, Miguel Federico Núñez, Darío Sarbach, Olivier |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Boson stars Semiclassical approximation |
topic |
Boson stars Semiclassical approximation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We construct boson star configurations in quantum field theory using the semiclassical gravity approximation. Restricting our attention to the static case, we show that the semiclassical Einstein-Klein-Gordon system for a single real quantum scalar field whose state describes the excitation of N identical particles, each one corresponding to a given energy level, can be reduced to the Einstein-Klein-Gordon system for N complex classical scalar fields. Particular consideration is given to the spherically symmetric static scenario, where energy levels are labeled by quantum numbers n, ℓ, and m. When all particles are accommodated in the ground state n=ℓ=m=0, one recovers the standard static boson star solutions, that can be excited if n≠0. On the other hand, for the case where all particles have fixed radial and total angular momentum numbers n and ℓ, with ℓ≠0, but are homogeneously distributed with respect to their magnetic number m, one obtains the ℓ-boson stars, whereas when ℓ=m=0 and n takes multiple values, the multistate boson star solutions are obtained. Further generalizations of these configurations are presented, including the multi-ℓ multistate boson stars, that constitute the most general solutions to the N-particle, static, spherically symmetric, semiclassical real Einstein-Klein-Gordon system, in which the total number of particles is definite. In spite of the fact that the same spacetime configurations also appear in multifield classical theories, in semiclassical gravity, they arise naturally as the quantum fluctuations associated with the state of a single field describing a many-body system. Our results could have potential impact on direct detection experiments in the context of ultralight scalar field/fuzzy dark matter candidates. Fil: Alcubierre, Miguel. Universidad Nacional Autónoma de México; México Fil: Barranco, Juan. Universidad de Guanajuato; México Fil: Bernal, Argelia. Universidad de Guanajuato; México Fil: Degollado, Juan Carlos. Universidad Nacional Autónoma de México; México Fil: Diez Tejedor, Alberto. Universidad de Guanajuato; México Fil: Megevand Politano, Miguel Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Núñez, Darío. Universidad Nacional Autónoma de México; México Fil: Sarbach, Olivier. Universidad Michoacana de San Nicolás de Hidalgo; México |
description |
We construct boson star configurations in quantum field theory using the semiclassical gravity approximation. Restricting our attention to the static case, we show that the semiclassical Einstein-Klein-Gordon system for a single real quantum scalar field whose state describes the excitation of N identical particles, each one corresponding to a given energy level, can be reduced to the Einstein-Klein-Gordon system for N complex classical scalar fields. Particular consideration is given to the spherically symmetric static scenario, where energy levels are labeled by quantum numbers n, ℓ, and m. When all particles are accommodated in the ground state n=ℓ=m=0, one recovers the standard static boson star solutions, that can be excited if n≠0. On the other hand, for the case where all particles have fixed radial and total angular momentum numbers n and ℓ, with ℓ≠0, but are homogeneously distributed with respect to their magnetic number m, one obtains the ℓ-boson stars, whereas when ℓ=m=0 and n takes multiple values, the multistate boson star solutions are obtained. Further generalizations of these configurations are presented, including the multi-ℓ multistate boson stars, that constitute the most general solutions to the N-particle, static, spherically symmetric, semiclassical real Einstein-Klein-Gordon system, in which the total number of particles is definite. In spite of the fact that the same spacetime configurations also appear in multifield classical theories, in semiclassical gravity, they arise naturally as the quantum fluctuations associated with the state of a single field describing a many-body system. Our results could have potential impact on direct detection experiments in the context of ultralight scalar field/fuzzy dark matter candidates. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226575 Alcubierre, Miguel; Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez Tejedor, Alberto; et al.; Boson stars and their relatives in semiclassical gravity; American Physical Society; Physical Review D; 107; 4; 2-2023; 1-21 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/226575 |
identifier_str_mv |
Alcubierre, Miguel; Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez Tejedor, Alberto; et al.; Boson stars and their relatives in semiclassical gravity; American Physical Society; Physical Review D; 107; 4; 2-2023; 1-21 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.045017 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614207459295232 |
score |
13.070432 |