Semiclassical matrix elements for a chaotic propagator in the scar function basis
- Autores
- Rivas, Alejandro Mariano Fidel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A semiclassical approximation for the matrix elements of a quantum chaotic propagator in the scar function basis has been derived. The obtained expression is solely expressed in terms of canonical invariant objects. For our purpose, we have used the recently developed, semiclassical matrix elements of the propagator in coherent states, together with the linearization of the flux in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The expression derived here is successfully verified to be exact for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus.
Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Semiclassical theories and applications
Quantum chaos; semiclassical methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23901
Ver los metadatos del registro completo
id |
CONICETDig_aaf9de3c94cd21dc4f7dfc0003fbce50 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23901 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Semiclassical matrix elements for a chaotic propagator in the scar function basisRivas, Alejandro Mariano FidelSemiclassical theories and applicationsQuantum chaos; semiclassical methodshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A semiclassical approximation for the matrix elements of a quantum chaotic propagator in the scar function basis has been derived. The obtained expression is solely expressed in terms of canonical invariant objects. For our purpose, we have used the recently developed, semiclassical matrix elements of the propagator in coherent states, together with the linearization of the flux in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The expression derived here is successfully verified to be exact for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus.Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23901Rivas, Alejandro Mariano Fidel; Semiclassical matrix elements for a chaotic propagator in the scar function basis; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 3-2013; 145101-1451121751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/14/145101info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/14/145101info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.3945info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:27:38Zoai:ri.conicet.gov.ar:11336/23901instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:27:38.612CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Semiclassical matrix elements for a chaotic propagator in the scar function basis |
title |
Semiclassical matrix elements for a chaotic propagator in the scar function basis |
spellingShingle |
Semiclassical matrix elements for a chaotic propagator in the scar function basis Rivas, Alejandro Mariano Fidel Semiclassical theories and applications Quantum chaos; semiclassical methods |
title_short |
Semiclassical matrix elements for a chaotic propagator in the scar function basis |
title_full |
Semiclassical matrix elements for a chaotic propagator in the scar function basis |
title_fullStr |
Semiclassical matrix elements for a chaotic propagator in the scar function basis |
title_full_unstemmed |
Semiclassical matrix elements for a chaotic propagator in the scar function basis |
title_sort |
Semiclassical matrix elements for a chaotic propagator in the scar function basis |
dc.creator.none.fl_str_mv |
Rivas, Alejandro Mariano Fidel |
author |
Rivas, Alejandro Mariano Fidel |
author_facet |
Rivas, Alejandro Mariano Fidel |
author_role |
author |
dc.subject.none.fl_str_mv |
Semiclassical theories and applications Quantum chaos; semiclassical methods |
topic |
Semiclassical theories and applications Quantum chaos; semiclassical methods |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A semiclassical approximation for the matrix elements of a quantum chaotic propagator in the scar function basis has been derived. The obtained expression is solely expressed in terms of canonical invariant objects. For our purpose, we have used the recently developed, semiclassical matrix elements of the propagator in coherent states, together with the linearization of the flux in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The expression derived here is successfully verified to be exact for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus. Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A semiclassical approximation for the matrix elements of a quantum chaotic propagator in the scar function basis has been derived. The obtained expression is solely expressed in terms of canonical invariant objects. For our purpose, we have used the recently developed, semiclassical matrix elements of the propagator in coherent states, together with the linearization of the flux in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The expression derived here is successfully verified to be exact for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23901 Rivas, Alejandro Mariano Fidel; Semiclassical matrix elements for a chaotic propagator in the scar function basis; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 3-2013; 145101-145112 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23901 |
identifier_str_mv |
Rivas, Alejandro Mariano Fidel; Semiclassical matrix elements for a chaotic propagator in the scar function basis; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 3-2013; 145101-145112 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/14/145101 info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/14/145101 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.3945 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083417817481216 |
score |
13.22299 |