Semiclassical matrix elements for a chaotic propagator in the scar function basis

Autores
Rivas, Alejandro Mariano Fidel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A semiclassical approximation for the matrix elements of a quantum chaotic propagator in the scar function basis has been derived. The obtained expression is solely expressed in terms of canonical invariant objects. For our purpose, we have used the recently developed, semiclassical matrix elements of the propagator in coherent states, together with the linearization of the flux in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The expression derived here is successfully verified to be exact for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus.
Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Semiclassical theories and applications
Quantum chaos; semiclassical methods
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23901

id CONICETDig_aaf9de3c94cd21dc4f7dfc0003fbce50
oai_identifier_str oai:ri.conicet.gov.ar:11336/23901
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Semiclassical matrix elements for a chaotic propagator in the scar function basisRivas, Alejandro Mariano FidelSemiclassical theories and applicationsQuantum chaos; semiclassical methodshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A semiclassical approximation for the matrix elements of a quantum chaotic propagator in the scar function basis has been derived. The obtained expression is solely expressed in terms of canonical invariant objects. For our purpose, we have used the recently developed, semiclassical matrix elements of the propagator in coherent states, together with the linearization of the flux in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The expression derived here is successfully verified to be exact for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus.Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23901Rivas, Alejandro Mariano Fidel; Semiclassical matrix elements for a chaotic propagator in the scar function basis; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 3-2013; 145101-1451121751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/14/145101info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/14/145101info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.3945info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:27:38Zoai:ri.conicet.gov.ar:11336/23901instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:27:38.612CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Semiclassical matrix elements for a chaotic propagator in the scar function basis
title Semiclassical matrix elements for a chaotic propagator in the scar function basis
spellingShingle Semiclassical matrix elements for a chaotic propagator in the scar function basis
Rivas, Alejandro Mariano Fidel
Semiclassical theories and applications
Quantum chaos; semiclassical methods
title_short Semiclassical matrix elements for a chaotic propagator in the scar function basis
title_full Semiclassical matrix elements for a chaotic propagator in the scar function basis
title_fullStr Semiclassical matrix elements for a chaotic propagator in the scar function basis
title_full_unstemmed Semiclassical matrix elements for a chaotic propagator in the scar function basis
title_sort Semiclassical matrix elements for a chaotic propagator in the scar function basis
dc.creator.none.fl_str_mv Rivas, Alejandro Mariano Fidel
author Rivas, Alejandro Mariano Fidel
author_facet Rivas, Alejandro Mariano Fidel
author_role author
dc.subject.none.fl_str_mv Semiclassical theories and applications
Quantum chaos; semiclassical methods
topic Semiclassical theories and applications
Quantum chaos; semiclassical methods
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A semiclassical approximation for the matrix elements of a quantum chaotic propagator in the scar function basis has been derived. The obtained expression is solely expressed in terms of canonical invariant objects. For our purpose, we have used the recently developed, semiclassical matrix elements of the propagator in coherent states, together with the linearization of the flux in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The expression derived here is successfully verified to be exact for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus.
Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A semiclassical approximation for the matrix elements of a quantum chaotic propagator in the scar function basis has been derived. The obtained expression is solely expressed in terms of canonical invariant objects. For our purpose, we have used the recently developed, semiclassical matrix elements of the propagator in coherent states, together with the linearization of the flux in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The expression derived here is successfully verified to be exact for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23901
Rivas, Alejandro Mariano Fidel; Semiclassical matrix elements for a chaotic propagator in the scar function basis; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 3-2013; 145101-145112
1751-8113
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23901
identifier_str_mv Rivas, Alejandro Mariano Fidel; Semiclassical matrix elements for a chaotic propagator in the scar function basis; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 3-2013; 145101-145112
1751-8113
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/14/145101
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/14/145101
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.3945
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083417817481216
score 13.22299