Holographic interference in atomic photoionization from a semiclassical standpoint

Autores
López, Sebastián David; Arbo, Diego
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)2469-992610.1103/PhysRevA.94.013415] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized during the ionization process by a single-cycle pulse with three different types of interferences. We show that the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)10.1103/PhysRevLett.121.143201]. We probe the two-step semiclassical model by comparing it to the numerical results of the time-dependent Schrödinger equation.
Fil: López, Sebastián David. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Arbo, Diego. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
HOLOGRAPHIC
INTERFERENCE
PHOTOIONIZATION
SEMICLASSICAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98741

id CONICETDig_062333494262153a4d6ee63503ff589d
oai_identifier_str oai:ri.conicet.gov.ar:11336/98741
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Holographic interference in atomic photoionization from a semiclassical standpointLópez, Sebastián DavidArbo, DiegoHOLOGRAPHICINTERFERENCEPHOTOIONIZATIONSEMICLASSICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)2469-992610.1103/PhysRevA.94.013415] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized during the ionization process by a single-cycle pulse with three different types of interferences. We show that the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)10.1103/PhysRevLett.121.143201]. We probe the two-step semiclassical model by comparing it to the numerical results of the time-dependent Schrödinger equation.Fil: López, Sebastián David. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Arbo, Diego. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaAmerican Physical Society2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98741López, Sebastián David; Arbo, Diego; Holographic interference in atomic photoionization from a semiclassical standpoint; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 100; 2; 8-2019; 1-112469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.100.023419info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.023419info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.13626info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:41Zoai:ri.conicet.gov.ar:11336/98741instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:41.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Holographic interference in atomic photoionization from a semiclassical standpoint
title Holographic interference in atomic photoionization from a semiclassical standpoint
spellingShingle Holographic interference in atomic photoionization from a semiclassical standpoint
López, Sebastián David
HOLOGRAPHIC
INTERFERENCE
PHOTOIONIZATION
SEMICLASSICAL
title_short Holographic interference in atomic photoionization from a semiclassical standpoint
title_full Holographic interference in atomic photoionization from a semiclassical standpoint
title_fullStr Holographic interference in atomic photoionization from a semiclassical standpoint
title_full_unstemmed Holographic interference in atomic photoionization from a semiclassical standpoint
title_sort Holographic interference in atomic photoionization from a semiclassical standpoint
dc.creator.none.fl_str_mv López, Sebastián David
Arbo, Diego
author López, Sebastián David
author_facet López, Sebastián David
Arbo, Diego
author_role author
author2 Arbo, Diego
author2_role author
dc.subject.none.fl_str_mv HOLOGRAPHIC
INTERFERENCE
PHOTOIONIZATION
SEMICLASSICAL
topic HOLOGRAPHIC
INTERFERENCE
PHOTOIONIZATION
SEMICLASSICAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)2469-992610.1103/PhysRevA.94.013415] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized during the ionization process by a single-cycle pulse with three different types of interferences. We show that the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)10.1103/PhysRevLett.121.143201]. We probe the two-step semiclassical model by comparing it to the numerical results of the time-dependent Schrödinger equation.
Fil: López, Sebastián David. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Arbo, Diego. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)2469-992610.1103/PhysRevA.94.013415] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized during the ionization process by a single-cycle pulse with three different types of interferences. We show that the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)10.1103/PhysRevLett.121.143201]. We probe the two-step semiclassical model by comparing it to the numerical results of the time-dependent Schrödinger equation.
publishDate 2019
dc.date.none.fl_str_mv 2019-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98741
López, Sebastián David; Arbo, Diego; Holographic interference in atomic photoionization from a semiclassical standpoint; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 100; 2; 8-2019; 1-11
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98741
identifier_str_mv López, Sebastián David; Arbo, Diego; Holographic interference in atomic photoionization from a semiclassical standpoint; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 100; 2; 8-2019; 1-11
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.100.023419
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.023419
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.13626
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270130102337536
score 13.13397