Holographic interference in atomic photoionization from a semiclassical standpoint
- Autores
- López, Sebastián David; Arbo, Diego
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)2469-992610.1103/PhysRevA.94.013415] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized during the ionization process by a single-cycle pulse with three different types of interferences. We show that the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)10.1103/PhysRevLett.121.143201]. We probe the two-step semiclassical model by comparing it to the numerical results of the time-dependent Schrödinger equation.
Fil: López, Sebastián David. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Arbo, Diego. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
HOLOGRAPHIC
INTERFERENCE
PHOTOIONIZATION
SEMICLASSICAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98741
Ver los metadatos del registro completo
id |
CONICETDig_062333494262153a4d6ee63503ff589d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98741 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Holographic interference in atomic photoionization from a semiclassical standpointLópez, Sebastián DavidArbo, DiegoHOLOGRAPHICINTERFERENCEPHOTOIONIZATIONSEMICLASSICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)2469-992610.1103/PhysRevA.94.013415] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized during the ionization process by a single-cycle pulse with three different types of interferences. We show that the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)10.1103/PhysRevLett.121.143201]. We probe the two-step semiclassical model by comparing it to the numerical results of the time-dependent Schrödinger equation.Fil: López, Sebastián David. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Arbo, Diego. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaAmerican Physical Society2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98741López, Sebastián David; Arbo, Diego; Holographic interference in atomic photoionization from a semiclassical standpoint; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 100; 2; 8-2019; 1-112469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.100.023419info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.023419info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.13626info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:41Zoai:ri.conicet.gov.ar:11336/98741instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:41.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Holographic interference in atomic photoionization from a semiclassical standpoint |
title |
Holographic interference in atomic photoionization from a semiclassical standpoint |
spellingShingle |
Holographic interference in atomic photoionization from a semiclassical standpoint López, Sebastián David HOLOGRAPHIC INTERFERENCE PHOTOIONIZATION SEMICLASSICAL |
title_short |
Holographic interference in atomic photoionization from a semiclassical standpoint |
title_full |
Holographic interference in atomic photoionization from a semiclassical standpoint |
title_fullStr |
Holographic interference in atomic photoionization from a semiclassical standpoint |
title_full_unstemmed |
Holographic interference in atomic photoionization from a semiclassical standpoint |
title_sort |
Holographic interference in atomic photoionization from a semiclassical standpoint |
dc.creator.none.fl_str_mv |
López, Sebastián David Arbo, Diego |
author |
López, Sebastián David |
author_facet |
López, Sebastián David Arbo, Diego |
author_role |
author |
author2 |
Arbo, Diego |
author2_role |
author |
dc.subject.none.fl_str_mv |
HOLOGRAPHIC INTERFERENCE PHOTOIONIZATION SEMICLASSICAL |
topic |
HOLOGRAPHIC INTERFERENCE PHOTOIONIZATION SEMICLASSICAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)2469-992610.1103/PhysRevA.94.013415] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized during the ionization process by a single-cycle pulse with three different types of interferences. We show that the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)10.1103/PhysRevLett.121.143201]. We probe the two-step semiclassical model by comparing it to the numerical results of the time-dependent Schrödinger equation. Fil: López, Sebastián David. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Arbo, Diego. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
A theoretical study of the interference pattern imprinted on the doubly differential momentum distribution of the photoelectron due to atomic ionization induced by a short laser pulse is developed from a semiclassical standpoint. We use the semiclassical two-step model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)2469-992610.1103/PhysRevA.94.013415] to elucidate the nature of the holographic structure. Three different types of trajectories are characterized during the ionization process by a single-cycle pulse with three different types of interferences. We show that the holographic interference arises from the ionization yield only during the first half cycle of the pulse, whereas the coherent superposition of electron trajectories during the first half cycle and the second half cycle gives rise to two other kinds of intracycle interference. Although the picture of interference of a reference beam and a signal beam is adequate, we show that our results for the formation of the holographic pattern agree with the glory rescattering theory of Xia et al. [Phys. Rev. Lett. 121, 143201 (2018)10.1103/PhysRevLett.121.143201]. We probe the two-step semiclassical model by comparing it to the numerical results of the time-dependent Schrödinger equation. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98741 López, Sebastián David; Arbo, Diego; Holographic interference in atomic photoionization from a semiclassical standpoint; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 100; 2; 8-2019; 1-11 2469-9934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98741 |
identifier_str_mv |
López, Sebastián David; Arbo, Diego; Holographic interference in atomic photoionization from a semiclassical standpoint; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 100; 2; 8-2019; 1-11 2469-9934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.100.023419 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.023419 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.13626 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270130102337536 |
score |
13.13397 |