Minimum distance method for directional data and outlier detection
- Autores
- Fernandez Sau, Mercedes; Rodriguez, Daniela Andrea
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets.
Fil: Fernandez Sau, Mercedes. Universidad de Buenos Aires; Argentina
Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ASYMPTOTIC PROPERTIES
DIRECTIONAL DATA
OUTLIER DETECTION
ROBUST ESTIMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55569
Ver los metadatos del registro completo
id |
CONICETDig_3e2f7f1376367ef5affe89a778b8b058 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55569 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Minimum distance method for directional data and outlier detectionFernandez Sau, MercedesRodriguez, Daniela AndreaASYMPTOTIC PROPERTIESDIRECTIONAL DATAOUTLIER DETECTIONROBUST ESTIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets.Fil: Fernandez Sau, Mercedes. Universidad de Buenos Aires; ArgentinaFil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer Verlag Berlín2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55569Fernandez Sau, Mercedes; Rodriguez, Daniela Andrea; Minimum distance method for directional data and outlier detection; Springer Verlag Berlín; Advances in Data Analysis and Classification; 6-2017; 1-171862-53471862-5355CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11634-017-0287-9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11634-017-0287-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:15Zoai:ri.conicet.gov.ar:11336/55569instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:15.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Minimum distance method for directional data and outlier detection |
title |
Minimum distance method for directional data and outlier detection |
spellingShingle |
Minimum distance method for directional data and outlier detection Fernandez Sau, Mercedes ASYMPTOTIC PROPERTIES DIRECTIONAL DATA OUTLIER DETECTION ROBUST ESTIMATION |
title_short |
Minimum distance method for directional data and outlier detection |
title_full |
Minimum distance method for directional data and outlier detection |
title_fullStr |
Minimum distance method for directional data and outlier detection |
title_full_unstemmed |
Minimum distance method for directional data and outlier detection |
title_sort |
Minimum distance method for directional data and outlier detection |
dc.creator.none.fl_str_mv |
Fernandez Sau, Mercedes Rodriguez, Daniela Andrea |
author |
Fernandez Sau, Mercedes |
author_facet |
Fernandez Sau, Mercedes Rodriguez, Daniela Andrea |
author_role |
author |
author2 |
Rodriguez, Daniela Andrea |
author2_role |
author |
dc.subject.none.fl_str_mv |
ASYMPTOTIC PROPERTIES DIRECTIONAL DATA OUTLIER DETECTION ROBUST ESTIMATION |
topic |
ASYMPTOTIC PROPERTIES DIRECTIONAL DATA OUTLIER DETECTION ROBUST ESTIMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets. Fil: Fernandez Sau, Mercedes. Universidad de Buenos Aires; Argentina Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55569 Fernandez Sau, Mercedes; Rodriguez, Daniela Andrea; Minimum distance method for directional data and outlier detection; Springer Verlag Berlín; Advances in Data Analysis and Classification; 6-2017; 1-17 1862-5347 1862-5355 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55569 |
identifier_str_mv |
Fernandez Sau, Mercedes; Rodriguez, Daniela Andrea; Minimum distance method for directional data and outlier detection; Springer Verlag Berlín; Advances in Data Analysis and Classification; 6-2017; 1-17 1862-5347 1862-5355 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11634-017-0287-9 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11634-017-0287-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag Berlín |
publisher.none.fl_str_mv |
Springer Verlag Berlín |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613886420975616 |
score |
13.070432 |