Hiperheurística diseñada para un problema de localización y transporte público
- Autores
- Rodriguez, Diego Alejandro; Olivera, Ana Carolina; Brignole, Nelida Beatriz
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Se propone aquí el empleo de una hiperheurística para resolver un problema de localización y transporte. El trabajo presenta una clasificación en el campo de las hiperheurísticas, se establecen claramente los beneficios que proporcionan y se exponen las nuevas tendencias en su utilización. Se plantea un modelo de una hiperheurística aleatoria basada en metaheurísticas. Las metaheurísticas empleadas en el modelo son: Recocido Simulado (SA: Simulated Annealing) y Optimización por Colonia de Hormigas (ACO: Ant Colony Optimization). Se destacan las debilidades y fortalezas que éstas presentan, y se hace hincapié en la importancia de la calibración de los parámetros asociados. Se propone un simple algoritmo que resuelve una instancia basada en una línea existente de transporte público de pasajeros. Se demuestra que la hiperheurística obtiene resultados satisfactorios, eligiendo aleatoriamente la técnica a utilizar en cada iteración. Así, las técnicas logran combinarse para obtener un equilibrio entre la diversificación y la intensificación en la búsqueda de soluciones. Esto implica disminuir la cantidad de evaluaciones a realizar y mejorar los tiempos de cómputos para la obtención de una solución satisfactoria.
Fil: Rodriguez, Diego Alejandro. Universidad Nacional de Salta. Facultad de Cs.exactas - Cons.de Investigacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Grupo Vinculado Al Plapiqui - Investigación y Desarrollo en Tecnologia Quimica; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina
Fil: Olivera, Ana Carolina. Universidad Nacional de la Patagonia Austral. Unidad Academica Caleta Olivia. Departamento de Cs.exactas y Naturales; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Brignole, Nelida Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Grupo Vinculado Al Plapiqui - Investigación y Desarrollo en Tecnologia Quimica; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina - Materia
-
Hiperheurística
Transporte Público
Localización
Ruteo de Vehículos
Optimización - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13453
Ver los metadatos del registro completo
id |
CONICETDig_3d4aa653d82c218a99fa32fbb1c82aa2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13453 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hiperheurística diseñada para un problema de localización y transporte públicoRodriguez, Diego AlejandroOlivera, Ana CarolinaBrignole, Nelida BeatrizHiperheurísticaTransporte PúblicoLocalizaciónRuteo de VehículosOptimizaciónhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Se propone aquí el empleo de una hiperheurística para resolver un problema de localización y transporte. El trabajo presenta una clasificación en el campo de las hiperheurísticas, se establecen claramente los beneficios que proporcionan y se exponen las nuevas tendencias en su utilización. Se plantea un modelo de una hiperheurística aleatoria basada en metaheurísticas. Las metaheurísticas empleadas en el modelo son: Recocido Simulado (SA: Simulated Annealing) y Optimización por Colonia de Hormigas (ACO: Ant Colony Optimization). Se destacan las debilidades y fortalezas que éstas presentan, y se hace hincapié en la importancia de la calibración de los parámetros asociados. Se propone un simple algoritmo que resuelve una instancia basada en una línea existente de transporte público de pasajeros. Se demuestra que la hiperheurística obtiene resultados satisfactorios, eligiendo aleatoriamente la técnica a utilizar en cada iteración. Así, las técnicas logran combinarse para obtener un equilibrio entre la diversificación y la intensificación en la búsqueda de soluciones. Esto implica disminuir la cantidad de evaluaciones a realizar y mejorar los tiempos de cómputos para la obtención de una solución satisfactoria.Fil: Rodriguez, Diego Alejandro. Universidad Nacional de Salta. Facultad de Cs.exactas - Cons.de Investigacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Grupo Vinculado Al Plapiqui - Investigación y Desarrollo en Tecnologia Quimica; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; ArgentinaFil: Olivera, Ana Carolina. Universidad Nacional de la Patagonia Austral. Unidad Academica Caleta Olivia. Departamento de Cs.exactas y Naturales; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Brignole, Nelida Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Grupo Vinculado Al Plapiqui - Investigación y Desarrollo en Tecnologia Quimica; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; ArgentinaAsociación Argentina de Mecánica Computacional2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13453Rodriguez, Diego Alejandro; Olivera, Ana Carolina; Brignole, Nelida Beatriz; Hiperheurística diseñada para un problema de localización y transporte público; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; 34; 33; 10-2014; 2513-25212591-3522spainfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/4847info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:19Zoai:ri.conicet.gov.ar:11336/13453instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:19.332CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hiperheurística diseñada para un problema de localización y transporte público |
title |
Hiperheurística diseñada para un problema de localización y transporte público |
spellingShingle |
Hiperheurística diseñada para un problema de localización y transporte público Rodriguez, Diego Alejandro Hiperheurística Transporte Público Localización Ruteo de Vehículos Optimización |
title_short |
Hiperheurística diseñada para un problema de localización y transporte público |
title_full |
Hiperheurística diseñada para un problema de localización y transporte público |
title_fullStr |
Hiperheurística diseñada para un problema de localización y transporte público |
title_full_unstemmed |
Hiperheurística diseñada para un problema de localización y transporte público |
title_sort |
Hiperheurística diseñada para un problema de localización y transporte público |
dc.creator.none.fl_str_mv |
Rodriguez, Diego Alejandro Olivera, Ana Carolina Brignole, Nelida Beatriz |
author |
Rodriguez, Diego Alejandro |
author_facet |
Rodriguez, Diego Alejandro Olivera, Ana Carolina Brignole, Nelida Beatriz |
author_role |
author |
author2 |
Olivera, Ana Carolina Brignole, Nelida Beatriz |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hiperheurística Transporte Público Localización Ruteo de Vehículos Optimización |
topic |
Hiperheurística Transporte Público Localización Ruteo de Vehículos Optimización |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Se propone aquí el empleo de una hiperheurística para resolver un problema de localización y transporte. El trabajo presenta una clasificación en el campo de las hiperheurísticas, se establecen claramente los beneficios que proporcionan y se exponen las nuevas tendencias en su utilización. Se plantea un modelo de una hiperheurística aleatoria basada en metaheurísticas. Las metaheurísticas empleadas en el modelo son: Recocido Simulado (SA: Simulated Annealing) y Optimización por Colonia de Hormigas (ACO: Ant Colony Optimization). Se destacan las debilidades y fortalezas que éstas presentan, y se hace hincapié en la importancia de la calibración de los parámetros asociados. Se propone un simple algoritmo que resuelve una instancia basada en una línea existente de transporte público de pasajeros. Se demuestra que la hiperheurística obtiene resultados satisfactorios, eligiendo aleatoriamente la técnica a utilizar en cada iteración. Así, las técnicas logran combinarse para obtener un equilibrio entre la diversificación y la intensificación en la búsqueda de soluciones. Esto implica disminuir la cantidad de evaluaciones a realizar y mejorar los tiempos de cómputos para la obtención de una solución satisfactoria. Fil: Rodriguez, Diego Alejandro. Universidad Nacional de Salta. Facultad de Cs.exactas - Cons.de Investigacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Grupo Vinculado Al Plapiqui - Investigación y Desarrollo en Tecnologia Quimica; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina Fil: Olivera, Ana Carolina. Universidad Nacional de la Patagonia Austral. Unidad Academica Caleta Olivia. Departamento de Cs.exactas y Naturales; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Brignole, Nelida Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Grupo Vinculado Al Plapiqui - Investigación y Desarrollo en Tecnologia Quimica; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina |
description |
Se propone aquí el empleo de una hiperheurística para resolver un problema de localización y transporte. El trabajo presenta una clasificación en el campo de las hiperheurísticas, se establecen claramente los beneficios que proporcionan y se exponen las nuevas tendencias en su utilización. Se plantea un modelo de una hiperheurística aleatoria basada en metaheurísticas. Las metaheurísticas empleadas en el modelo son: Recocido Simulado (SA: Simulated Annealing) y Optimización por Colonia de Hormigas (ACO: Ant Colony Optimization). Se destacan las debilidades y fortalezas que éstas presentan, y se hace hincapié en la importancia de la calibración de los parámetros asociados. Se propone un simple algoritmo que resuelve una instancia basada en una línea existente de transporte público de pasajeros. Se demuestra que la hiperheurística obtiene resultados satisfactorios, eligiendo aleatoriamente la técnica a utilizar en cada iteración. Así, las técnicas logran combinarse para obtener un equilibrio entre la diversificación y la intensificación en la búsqueda de soluciones. Esto implica disminuir la cantidad de evaluaciones a realizar y mejorar los tiempos de cómputos para la obtención de una solución satisfactoria. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13453 Rodriguez, Diego Alejandro; Olivera, Ana Carolina; Brignole, Nelida Beatriz; Hiperheurística diseñada para un problema de localización y transporte público; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; 34; 33; 10-2014; 2513-2521 2591-3522 |
url |
http://hdl.handle.net/11336/13453 |
identifier_str_mv |
Rodriguez, Diego Alejandro; Olivera, Ana Carolina; Brignole, Nelida Beatriz; Hiperheurística diseñada para un problema de localización y transporte público; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; 34; 33; 10-2014; 2513-2521 2591-3522 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/4847 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269515615830016 |
score |
13.13397 |