Polycrystalline Ni nanotubes under compression: a molecular dynamics study

Autores
Rojas Nunez, J.; Baltazar, S. E.; Gonzalez, R. I.; Bringa, Eduardo Marcial; Allende, S.; Kiwi, M.; Valencia, F. J.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.
Fil: Rojas Nunez, J.. Universidad de Santiago de Chile; Chile
Fil: Baltazar, S. E.. Universidad de Santiago de Chile; Chile
Fil: Gonzalez, R. I.. Universidad Mayor; Chile
Fil: Bringa, Eduardo Marcial. Universidad Mayor; Chile. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Allende, S.. Universidad de Santiago de Chile; Chile
Fil: Kiwi, M.. Universidad de Santiago de Chile; Chile
Fil: Valencia, F. J.. Universidad de Santiago de Chile; Chile. Universidad Mayor; Chile
Materia
MOLECULAR DYNAMICS
NANOTUBE
STRAIN
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/169598

id CONICETDig_3d0e20b8be74882e251917d6867e6dd8
oai_identifier_str oai:ri.conicet.gov.ar:11336/169598
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Polycrystalline Ni nanotubes under compression: a molecular dynamics studyRojas Nunez, J.Baltazar, S. E.Gonzalez, R. I.Bringa, Eduardo MarcialAllende, S.Kiwi, M.Valencia, F. J.MOLECULAR DYNAMICSNANOTUBESTRAINhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.Fil: Rojas Nunez, J.. Universidad de Santiago de Chile; ChileFil: Baltazar, S. E.. Universidad de Santiago de Chile; ChileFil: Gonzalez, R. I.. Universidad Mayor; ChileFil: Bringa, Eduardo Marcial. Universidad Mayor; Chile. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Allende, S.. Universidad de Santiago de Chile; ChileFil: Kiwi, M.. Universidad de Santiago de Chile; ChileFil: Valencia, F. J.. Universidad de Santiago de Chile; Chile. Universidad Mayor; ChileNature Research2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/169598Rojas Nunez, J.; Baltazar, S. E.; Gonzalez, R. I.; Bringa, Eduardo Marcial; Allende, S.; et al.; Polycrystalline Ni nanotubes under compression: a molecular dynamics study; Nature Research; Scientific Reports; 10; 1; 12-20202045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-76276-yinfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-020-76276-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:03Zoai:ri.conicet.gov.ar:11336/169598instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:04.196CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Polycrystalline Ni nanotubes under compression: a molecular dynamics study
title Polycrystalline Ni nanotubes under compression: a molecular dynamics study
spellingShingle Polycrystalline Ni nanotubes under compression: a molecular dynamics study
Rojas Nunez, J.
MOLECULAR DYNAMICS
NANOTUBE
STRAIN
title_short Polycrystalline Ni nanotubes under compression: a molecular dynamics study
title_full Polycrystalline Ni nanotubes under compression: a molecular dynamics study
title_fullStr Polycrystalline Ni nanotubes under compression: a molecular dynamics study
title_full_unstemmed Polycrystalline Ni nanotubes under compression: a molecular dynamics study
title_sort Polycrystalline Ni nanotubes under compression: a molecular dynamics study
dc.creator.none.fl_str_mv Rojas Nunez, J.
Baltazar, S. E.
Gonzalez, R. I.
Bringa, Eduardo Marcial
Allende, S.
Kiwi, M.
Valencia, F. J.
author Rojas Nunez, J.
author_facet Rojas Nunez, J.
Baltazar, S. E.
Gonzalez, R. I.
Bringa, Eduardo Marcial
Allende, S.
Kiwi, M.
Valencia, F. J.
author_role author
author2 Baltazar, S. E.
Gonzalez, R. I.
Bringa, Eduardo Marcial
Allende, S.
Kiwi, M.
Valencia, F. J.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv MOLECULAR DYNAMICS
NANOTUBE
STRAIN
topic MOLECULAR DYNAMICS
NANOTUBE
STRAIN
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.
Fil: Rojas Nunez, J.. Universidad de Santiago de Chile; Chile
Fil: Baltazar, S. E.. Universidad de Santiago de Chile; Chile
Fil: Gonzalez, R. I.. Universidad Mayor; Chile
Fil: Bringa, Eduardo Marcial. Universidad Mayor; Chile. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Allende, S.. Universidad de Santiago de Chile; Chile
Fil: Kiwi, M.. Universidad de Santiago de Chile; Chile
Fil: Valencia, F. J.. Universidad de Santiago de Chile; Chile. Universidad Mayor; Chile
description Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/169598
Rojas Nunez, J.; Baltazar, S. E.; Gonzalez, R. I.; Bringa, Eduardo Marcial; Allende, S.; et al.; Polycrystalline Ni nanotubes under compression: a molecular dynamics study; Nature Research; Scientific Reports; 10; 1; 12-2020
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/169598
identifier_str_mv Rojas Nunez, J.; Baltazar, S. E.; Gonzalez, R. I.; Bringa, Eduardo Marcial; Allende, S.; et al.; Polycrystalline Ni nanotubes under compression: a molecular dynamics study; Nature Research; Scientific Reports; 10; 1; 12-2020
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-76276-y
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-020-76276-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269558910484480
score 13.13397