Polycrystalline Ni nanotubes under compression: a molecular dynamics study
- Autores
- Rojas Nunez, J.; Baltazar, S. E.; Gonzalez, R. I.; Bringa, Eduardo Marcial; Allende, S.; Kiwi, M.; Valencia, F. J.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.
Fil: Rojas Nunez, J.. Universidad de Santiago de Chile; Chile
Fil: Baltazar, S. E.. Universidad de Santiago de Chile; Chile
Fil: Gonzalez, R. I.. Universidad Mayor; Chile
Fil: Bringa, Eduardo Marcial. Universidad Mayor; Chile. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Allende, S.. Universidad de Santiago de Chile; Chile
Fil: Kiwi, M.. Universidad de Santiago de Chile; Chile
Fil: Valencia, F. J.. Universidad de Santiago de Chile; Chile. Universidad Mayor; Chile - Materia
-
MOLECULAR DYNAMICS
NANOTUBE
STRAIN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/169598
Ver los metadatos del registro completo
id |
CONICETDig_3d0e20b8be74882e251917d6867e6dd8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/169598 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polycrystalline Ni nanotubes under compression: a molecular dynamics studyRojas Nunez, J.Baltazar, S. E.Gonzalez, R. I.Bringa, Eduardo MarcialAllende, S.Kiwi, M.Valencia, F. J.MOLECULAR DYNAMICSNANOTUBESTRAINhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.Fil: Rojas Nunez, J.. Universidad de Santiago de Chile; ChileFil: Baltazar, S. E.. Universidad de Santiago de Chile; ChileFil: Gonzalez, R. I.. Universidad Mayor; ChileFil: Bringa, Eduardo Marcial. Universidad Mayor; Chile. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Allende, S.. Universidad de Santiago de Chile; ChileFil: Kiwi, M.. Universidad de Santiago de Chile; ChileFil: Valencia, F. J.. Universidad de Santiago de Chile; Chile. Universidad Mayor; ChileNature Research2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/169598Rojas Nunez, J.; Baltazar, S. E.; Gonzalez, R. I.; Bringa, Eduardo Marcial; Allende, S.; et al.; Polycrystalline Ni nanotubes under compression: a molecular dynamics study; Nature Research; Scientific Reports; 10; 1; 12-20202045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-76276-yinfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-020-76276-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:03Zoai:ri.conicet.gov.ar:11336/169598instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:04.196CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polycrystalline Ni nanotubes under compression: a molecular dynamics study |
title |
Polycrystalline Ni nanotubes under compression: a molecular dynamics study |
spellingShingle |
Polycrystalline Ni nanotubes under compression: a molecular dynamics study Rojas Nunez, J. MOLECULAR DYNAMICS NANOTUBE STRAIN |
title_short |
Polycrystalline Ni nanotubes under compression: a molecular dynamics study |
title_full |
Polycrystalline Ni nanotubes under compression: a molecular dynamics study |
title_fullStr |
Polycrystalline Ni nanotubes under compression: a molecular dynamics study |
title_full_unstemmed |
Polycrystalline Ni nanotubes under compression: a molecular dynamics study |
title_sort |
Polycrystalline Ni nanotubes under compression: a molecular dynamics study |
dc.creator.none.fl_str_mv |
Rojas Nunez, J. Baltazar, S. E. Gonzalez, R. I. Bringa, Eduardo Marcial Allende, S. Kiwi, M. Valencia, F. J. |
author |
Rojas Nunez, J. |
author_facet |
Rojas Nunez, J. Baltazar, S. E. Gonzalez, R. I. Bringa, Eduardo Marcial Allende, S. Kiwi, M. Valencia, F. J. |
author_role |
author |
author2 |
Baltazar, S. E. Gonzalez, R. I. Bringa, Eduardo Marcial Allende, S. Kiwi, M. Valencia, F. J. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
MOLECULAR DYNAMICS NANOTUBE STRAIN |
topic |
MOLECULAR DYNAMICS NANOTUBE STRAIN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required. Fil: Rojas Nunez, J.. Universidad de Santiago de Chile; Chile Fil: Baltazar, S. E.. Universidad de Santiago de Chile; Chile Fil: Gonzalez, R. I.. Universidad Mayor; Chile Fil: Bringa, Eduardo Marcial. Universidad Mayor; Chile. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Allende, S.. Universidad de Santiago de Chile; Chile Fil: Kiwi, M.. Universidad de Santiago de Chile; Chile Fil: Valencia, F. J.. Universidad de Santiago de Chile; Chile. Universidad Mayor; Chile |
description |
Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/169598 Rojas Nunez, J.; Baltazar, S. E.; Gonzalez, R. I.; Bringa, Eduardo Marcial; Allende, S.; et al.; Polycrystalline Ni nanotubes under compression: a molecular dynamics study; Nature Research; Scientific Reports; 10; 1; 12-2020 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/169598 |
identifier_str_mv |
Rojas Nunez, J.; Baltazar, S. E.; Gonzalez, R. I.; Bringa, Eduardo Marcial; Allende, S.; et al.; Polycrystalline Ni nanotubes under compression: a molecular dynamics study; Nature Research; Scientific Reports; 10; 1; 12-2020 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-76276-y info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-020-76276-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269558910484480 |
score |
13.13397 |