Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
- Autores
- Mora Barzaga, Geraudys; Valencia, Felipe J.; Carrasco, Matías I.; González, Rafael I.; Parlanti, Martín Gabriel; Miranda, Enrique Nestor; Bringa, Eduardo Marcial
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The thermal conductivity of nanostructures can be obtained using atomistic classical Molecular Dynamics (MD) simulations, particularly for semiconductors where there is no significant contribution from electrons to thermal conduction. In this work, we obtain and analyze the thermal conductivity of amorphous carbon (aC) nanowires (NW) with a 2 nm radius and aC nanotubes (NT) with 0.5, 1 and 1.3 nm internal radii and a 2 nm external radius. The behavior of thermal conductivity with internal radii, temperature and density (related to different levels of (Formula presented.) hybridization), is compared with experimental results from the literature. Reasonable agreement is found between our modeling results and the experiments for aC films. In addition, in our simulations, the bulk conductivity is lower than the NW conductivity, which in turn is lower than the NT conductivity. NTs thermal conductivity can be tailored as a function of the wall thickness, which surprisingly increases when the wall thickness decreases. While the vibrational density of states (VDOS) is similar for bulk, NW and NT, the elastic modulus is sensitive to the geometrical parameters, which can explain the enhanced thermal conductivity observed for the simulated nanostructures.
Fil: Mora Barzaga, Geraudys. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valencia, Felipe J.. Universidad Católica de Maule; Chile
Fil: Carrasco, Matías I.. Universidad Mayor; Chile
Fil: González, Rafael I.. Universidad Mayor; Chile
Fil: Parlanti, Martín Gabriel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Mendoza; Argentina - Materia
-
AMORPHOUS CARBON
MOLECULAR DYNAMICS
NANOTUBES
NANOWIRES
THERMAL CONDUCTIVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210326
Ver los metadatos del registro completo
id |
CONICETDig_c2c1cd2ebb3c91686789b774e695fa95 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210326 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and NanotubesMora Barzaga, GeraudysValencia, Felipe J.Carrasco, Matías I.González, Rafael I.Parlanti, Martín GabrielMiranda, Enrique NestorBringa, Eduardo MarcialAMORPHOUS CARBONMOLECULAR DYNAMICSNANOTUBESNANOWIRESTHERMAL CONDUCTIVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The thermal conductivity of nanostructures can be obtained using atomistic classical Molecular Dynamics (MD) simulations, particularly for semiconductors where there is no significant contribution from electrons to thermal conduction. In this work, we obtain and analyze the thermal conductivity of amorphous carbon (aC) nanowires (NW) with a 2 nm radius and aC nanotubes (NT) with 0.5, 1 and 1.3 nm internal radii and a 2 nm external radius. The behavior of thermal conductivity with internal radii, temperature and density (related to different levels of (Formula presented.) hybridization), is compared with experimental results from the literature. Reasonable agreement is found between our modeling results and the experiments for aC films. In addition, in our simulations, the bulk conductivity is lower than the NW conductivity, which in turn is lower than the NT conductivity. NTs thermal conductivity can be tailored as a function of the wall thickness, which surprisingly increases when the wall thickness decreases. While the vibrational density of states (VDOS) is similar for bulk, NW and NT, the elastic modulus is sensitive to the geometrical parameters, which can explain the enhanced thermal conductivity observed for the simulated nanostructures.Fil: Mora Barzaga, Geraudys. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valencia, Felipe J.. Universidad Católica de Maule; ChileFil: Carrasco, Matías I.. Universidad Mayor; ChileFil: González, Rafael I.. Universidad Mayor; ChileFil: Parlanti, Martín Gabriel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Mendoza; ArgentinaMDPI2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210326Mora Barzaga, Geraudys; Valencia, Felipe J.; Carrasco, Matías I.; González, Rafael I.; Parlanti, Martín Gabriel; et al.; Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes; MDPI; Nanomaterials; 12; 16; 8-2022; 1-202079-4991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/12/16/2835info:eu-repo/semantics/altIdentifier/doi/10.3390/nano12162835info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:33Zoai:ri.conicet.gov.ar:11336/210326instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:33.444CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes |
title |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes |
spellingShingle |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes Mora Barzaga, Geraudys AMORPHOUS CARBON MOLECULAR DYNAMICS NANOTUBES NANOWIRES THERMAL CONDUCTIVITY |
title_short |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes |
title_full |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes |
title_fullStr |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes |
title_full_unstemmed |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes |
title_sort |
Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes |
dc.creator.none.fl_str_mv |
Mora Barzaga, Geraudys Valencia, Felipe J. Carrasco, Matías I. González, Rafael I. Parlanti, Martín Gabriel Miranda, Enrique Nestor Bringa, Eduardo Marcial |
author |
Mora Barzaga, Geraudys |
author_facet |
Mora Barzaga, Geraudys Valencia, Felipe J. Carrasco, Matías I. González, Rafael I. Parlanti, Martín Gabriel Miranda, Enrique Nestor Bringa, Eduardo Marcial |
author_role |
author |
author2 |
Valencia, Felipe J. Carrasco, Matías I. González, Rafael I. Parlanti, Martín Gabriel Miranda, Enrique Nestor Bringa, Eduardo Marcial |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
AMORPHOUS CARBON MOLECULAR DYNAMICS NANOTUBES NANOWIRES THERMAL CONDUCTIVITY |
topic |
AMORPHOUS CARBON MOLECULAR DYNAMICS NANOTUBES NANOWIRES THERMAL CONDUCTIVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The thermal conductivity of nanostructures can be obtained using atomistic classical Molecular Dynamics (MD) simulations, particularly for semiconductors where there is no significant contribution from electrons to thermal conduction. In this work, we obtain and analyze the thermal conductivity of amorphous carbon (aC) nanowires (NW) with a 2 nm radius and aC nanotubes (NT) with 0.5, 1 and 1.3 nm internal radii and a 2 nm external radius. The behavior of thermal conductivity with internal radii, temperature and density (related to different levels of (Formula presented.) hybridization), is compared with experimental results from the literature. Reasonable agreement is found between our modeling results and the experiments for aC films. In addition, in our simulations, the bulk conductivity is lower than the NW conductivity, which in turn is lower than the NT conductivity. NTs thermal conductivity can be tailored as a function of the wall thickness, which surprisingly increases when the wall thickness decreases. While the vibrational density of states (VDOS) is similar for bulk, NW and NT, the elastic modulus is sensitive to the geometrical parameters, which can explain the enhanced thermal conductivity observed for the simulated nanostructures. Fil: Mora Barzaga, Geraudys. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Valencia, Felipe J.. Universidad Católica de Maule; Chile Fil: Carrasco, Matías I.. Universidad Mayor; Chile Fil: González, Rafael I.. Universidad Mayor; Chile Fil: Parlanti, Martín Gabriel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Mendoza; Argentina |
description |
The thermal conductivity of nanostructures can be obtained using atomistic classical Molecular Dynamics (MD) simulations, particularly for semiconductors where there is no significant contribution from electrons to thermal conduction. In this work, we obtain and analyze the thermal conductivity of amorphous carbon (aC) nanowires (NW) with a 2 nm radius and aC nanotubes (NT) with 0.5, 1 and 1.3 nm internal radii and a 2 nm external radius. The behavior of thermal conductivity with internal radii, temperature and density (related to different levels of (Formula presented.) hybridization), is compared with experimental results from the literature. Reasonable agreement is found between our modeling results and the experiments for aC films. In addition, in our simulations, the bulk conductivity is lower than the NW conductivity, which in turn is lower than the NT conductivity. NTs thermal conductivity can be tailored as a function of the wall thickness, which surprisingly increases when the wall thickness decreases. While the vibrational density of states (VDOS) is similar for bulk, NW and NT, the elastic modulus is sensitive to the geometrical parameters, which can explain the enhanced thermal conductivity observed for the simulated nanostructures. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210326 Mora Barzaga, Geraudys; Valencia, Felipe J.; Carrasco, Matías I.; González, Rafael I.; Parlanti, Martín Gabriel; et al.; Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes; MDPI; Nanomaterials; 12; 16; 8-2022; 1-20 2079-4991 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210326 |
identifier_str_mv |
Mora Barzaga, Geraudys; Valencia, Felipe J.; Carrasco, Matías I.; González, Rafael I.; Parlanti, Martín Gabriel; et al.; Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes; MDPI; Nanomaterials; 12; 16; 8-2022; 1-20 2079-4991 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/12/16/2835 info:eu-repo/semantics/altIdentifier/doi/10.3390/nano12162835 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269101436698624 |
score |
13.13397 |