Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes

Autores
Mora Barzaga, Geraudys; Valencia, Felipe J.; Carrasco, Matías I.; González, Rafael I.; Parlanti, Martín Gabriel; Miranda, Enrique Nestor; Bringa, Eduardo Marcial
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The thermal conductivity of nanostructures can be obtained using atomistic classical Molecular Dynamics (MD) simulations, particularly for semiconductors where there is no significant contribution from electrons to thermal conduction. In this work, we obtain and analyze the thermal conductivity of amorphous carbon (aC) nanowires (NW) with a 2 nm radius and aC nanotubes (NT) with 0.5, 1 and 1.3 nm internal radii and a 2 nm external radius. The behavior of thermal conductivity with internal radii, temperature and density (related to different levels of (Formula presented.) hybridization), is compared with experimental results from the literature. Reasonable agreement is found between our modeling results and the experiments for aC films. In addition, in our simulations, the bulk conductivity is lower than the NW conductivity, which in turn is lower than the NT conductivity. NTs thermal conductivity can be tailored as a function of the wall thickness, which surprisingly increases when the wall thickness decreases. While the vibrational density of states (VDOS) is similar for bulk, NW and NT, the elastic modulus is sensitive to the geometrical parameters, which can explain the enhanced thermal conductivity observed for the simulated nanostructures.
Fil: Mora Barzaga, Geraudys. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valencia, Felipe J.. Universidad Católica de Maule; Chile
Fil: Carrasco, Matías I.. Universidad Mayor; Chile
Fil: González, Rafael I.. Universidad Mayor; Chile
Fil: Parlanti, Martín Gabriel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Mendoza; Argentina
Materia
AMORPHOUS CARBON
MOLECULAR DYNAMICS
NANOTUBES
NANOWIRES
THERMAL CONDUCTIVITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210326

id CONICETDig_c2c1cd2ebb3c91686789b774e695fa95
oai_identifier_str oai:ri.conicet.gov.ar:11336/210326
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and NanotubesMora Barzaga, GeraudysValencia, Felipe J.Carrasco, Matías I.González, Rafael I.Parlanti, Martín GabrielMiranda, Enrique NestorBringa, Eduardo MarcialAMORPHOUS CARBONMOLECULAR DYNAMICSNANOTUBESNANOWIRESTHERMAL CONDUCTIVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The thermal conductivity of nanostructures can be obtained using atomistic classical Molecular Dynamics (MD) simulations, particularly for semiconductors where there is no significant contribution from electrons to thermal conduction. In this work, we obtain and analyze the thermal conductivity of amorphous carbon (aC) nanowires (NW) with a 2 nm radius and aC nanotubes (NT) with 0.5, 1 and 1.3 nm internal radii and a 2 nm external radius. The behavior of thermal conductivity with internal radii, temperature and density (related to different levels of (Formula presented.) hybridization), is compared with experimental results from the literature. Reasonable agreement is found between our modeling results and the experiments for aC films. In addition, in our simulations, the bulk conductivity is lower than the NW conductivity, which in turn is lower than the NT conductivity. NTs thermal conductivity can be tailored as a function of the wall thickness, which surprisingly increases when the wall thickness decreases. While the vibrational density of states (VDOS) is similar for bulk, NW and NT, the elastic modulus is sensitive to the geometrical parameters, which can explain the enhanced thermal conductivity observed for the simulated nanostructures.Fil: Mora Barzaga, Geraudys. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valencia, Felipe J.. Universidad Católica de Maule; ChileFil: Carrasco, Matías I.. Universidad Mayor; ChileFil: González, Rafael I.. Universidad Mayor; ChileFil: Parlanti, Martín Gabriel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Mendoza; ArgentinaMDPI2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210326Mora Barzaga, Geraudys; Valencia, Felipe J.; Carrasco, Matías I.; González, Rafael I.; Parlanti, Martín Gabriel; et al.; Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes; MDPI; Nanomaterials; 12; 16; 8-2022; 1-202079-4991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/12/16/2835info:eu-repo/semantics/altIdentifier/doi/10.3390/nano12162835info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:33Zoai:ri.conicet.gov.ar:11336/210326instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:33.444CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
title Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
spellingShingle Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
Mora Barzaga, Geraudys
AMORPHOUS CARBON
MOLECULAR DYNAMICS
NANOTUBES
NANOWIRES
THERMAL CONDUCTIVITY
title_short Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
title_full Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
title_fullStr Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
title_full_unstemmed Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
title_sort Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes
dc.creator.none.fl_str_mv Mora Barzaga, Geraudys
Valencia, Felipe J.
Carrasco, Matías I.
González, Rafael I.
Parlanti, Martín Gabriel
Miranda, Enrique Nestor
Bringa, Eduardo Marcial
author Mora Barzaga, Geraudys
author_facet Mora Barzaga, Geraudys
Valencia, Felipe J.
Carrasco, Matías I.
González, Rafael I.
Parlanti, Martín Gabriel
Miranda, Enrique Nestor
Bringa, Eduardo Marcial
author_role author
author2 Valencia, Felipe J.
Carrasco, Matías I.
González, Rafael I.
Parlanti, Martín Gabriel
Miranda, Enrique Nestor
Bringa, Eduardo Marcial
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv AMORPHOUS CARBON
MOLECULAR DYNAMICS
NANOTUBES
NANOWIRES
THERMAL CONDUCTIVITY
topic AMORPHOUS CARBON
MOLECULAR DYNAMICS
NANOTUBES
NANOWIRES
THERMAL CONDUCTIVITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The thermal conductivity of nanostructures can be obtained using atomistic classical Molecular Dynamics (MD) simulations, particularly for semiconductors where there is no significant contribution from electrons to thermal conduction. In this work, we obtain and analyze the thermal conductivity of amorphous carbon (aC) nanowires (NW) with a 2 nm radius and aC nanotubes (NT) with 0.5, 1 and 1.3 nm internal radii and a 2 nm external radius. The behavior of thermal conductivity with internal radii, temperature and density (related to different levels of (Formula presented.) hybridization), is compared with experimental results from the literature. Reasonable agreement is found between our modeling results and the experiments for aC films. In addition, in our simulations, the bulk conductivity is lower than the NW conductivity, which in turn is lower than the NT conductivity. NTs thermal conductivity can be tailored as a function of the wall thickness, which surprisingly increases when the wall thickness decreases. While the vibrational density of states (VDOS) is similar for bulk, NW and NT, the elastic modulus is sensitive to the geometrical parameters, which can explain the enhanced thermal conductivity observed for the simulated nanostructures.
Fil: Mora Barzaga, Geraudys. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valencia, Felipe J.. Universidad Católica de Maule; Chile
Fil: Carrasco, Matías I.. Universidad Mayor; Chile
Fil: González, Rafael I.. Universidad Mayor; Chile
Fil: Parlanti, Martín Gabriel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Mendoza; Argentina
description The thermal conductivity of nanostructures can be obtained using atomistic classical Molecular Dynamics (MD) simulations, particularly for semiconductors where there is no significant contribution from electrons to thermal conduction. In this work, we obtain and analyze the thermal conductivity of amorphous carbon (aC) nanowires (NW) with a 2 nm radius and aC nanotubes (NT) with 0.5, 1 and 1.3 nm internal radii and a 2 nm external radius. The behavior of thermal conductivity with internal radii, temperature and density (related to different levels of (Formula presented.) hybridization), is compared with experimental results from the literature. Reasonable agreement is found between our modeling results and the experiments for aC films. In addition, in our simulations, the bulk conductivity is lower than the NW conductivity, which in turn is lower than the NT conductivity. NTs thermal conductivity can be tailored as a function of the wall thickness, which surprisingly increases when the wall thickness decreases. While the vibrational density of states (VDOS) is similar for bulk, NW and NT, the elastic modulus is sensitive to the geometrical parameters, which can explain the enhanced thermal conductivity observed for the simulated nanostructures.
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210326
Mora Barzaga, Geraudys; Valencia, Felipe J.; Carrasco, Matías I.; González, Rafael I.; Parlanti, Martín Gabriel; et al.; Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes; MDPI; Nanomaterials; 12; 16; 8-2022; 1-20
2079-4991
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210326
identifier_str_mv Mora Barzaga, Geraudys; Valencia, Felipe J.; Carrasco, Matías I.; González, Rafael I.; Parlanti, Martín Gabriel; et al.; Enhancing the Thermal Conductivity of Amorphous Carbon with Nanowires and Nanotubes; MDPI; Nanomaterials; 12; 16; 8-2022; 1-20
2079-4991
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/12/16/2835
info:eu-repo/semantics/altIdentifier/doi/10.3390/nano12162835
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269101436698624
score 13.13397