Multivariate analysis to research innovation complementarities
- Autores
- Morero, Hernan; Ortiz, Pablo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is widely recognized that orthodox economics is obsessed with econometrics tools. However, econometrics techniques have a limited capacity to deal with qualitative variables coming from surveys. This paper presents a defence of the use of statistical methods, in particular multivariate analysis, which is the overall objective of the paper. Multivariate analysis is a set of methods that can be used when the problem that arises implies multiple dependent or interdependent variables of a qualitative nature. We considered an issue in the literature to probe multivariate analysis in a particular topic, namely: the question of innovation complementarities. We analyzed the presence of complementarities between internal and external innovation activities in 257 software firms from Argentina during the period 2008–2010, comparing the consideration of the problem of complementarities with the more modern complementarity econometrical tests, super and sub modularity tests arising from diverse firm-innovation function estimations (OProbit, Tobit and Probit), with the engagement of the same issue with multiple factor analysis and cluster techniques. The results show not only that the same results obtained by the econometrical tools can be reached by multivariate analysis techniques, but also that multiple factor analysis and cluster techniques allow for better exploitation of the richness of qualitative data.
Fil: Morero, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Estudios sobre Cultura y Sociedad. Universidad Nacional de Córdoba. Centro de Investigaciones y Estudios sobre Cultura y Sociedad; Argentina
Fil: Ortiz, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Economía; Argentina - Materia
-
Innovation Complementarities
Multivariate Analysis
Plurality
Software Sector
Supermodularity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58286
Ver los metadatos del registro completo
id |
CONICETDig_3c260fb7fc4e5b5dfb2e8805efb44e21 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58286 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multivariate analysis to research innovation complementaritiesMorero, HernanOrtiz, PabloInnovation ComplementaritiesMultivariate AnalysisPluralitySoftware SectorSupermodularityhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5It is widely recognized that orthodox economics is obsessed with econometrics tools. However, econometrics techniques have a limited capacity to deal with qualitative variables coming from surveys. This paper presents a defence of the use of statistical methods, in particular multivariate analysis, which is the overall objective of the paper. Multivariate analysis is a set of methods that can be used when the problem that arises implies multiple dependent or interdependent variables of a qualitative nature. We considered an issue in the literature to probe multivariate analysis in a particular topic, namely: the question of innovation complementarities. We analyzed the presence of complementarities between internal and external innovation activities in 257 software firms from Argentina during the period 2008–2010, comparing the consideration of the problem of complementarities with the more modern complementarity econometrical tests, super and sub modularity tests arising from diverse firm-innovation function estimations (OProbit, Tobit and Probit), with the engagement of the same issue with multiple factor analysis and cluster techniques. The results show not only that the same results obtained by the econometrical tools can be reached by multivariate analysis techniques, but also that multiple factor analysis and cluster techniques allow for better exploitation of the richness of qualitative data.Fil: Morero, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Estudios sobre Cultura y Sociedad. Universidad Nacional de Córdoba. Centro de Investigaciones y Estudios sobre Cultura y Sociedad; ArgentinaFil: Ortiz, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Economía; ArgentinaTaylor & Francis2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58286Morero, Hernan; Ortiz, Pablo; Multivariate analysis to research innovation complementarities; Taylor & Francis; African Journal of Science, Technology, Innovation and Development; 10-2017; 1-162042-13382042-1346CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/20421338.2017.1355586info:eu-repo/semantics/altIdentifier/doi/10.1080/20421338.2017.1355586info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:10Zoai:ri.conicet.gov.ar:11336/58286instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:10.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multivariate analysis to research innovation complementarities |
title |
Multivariate analysis to research innovation complementarities |
spellingShingle |
Multivariate analysis to research innovation complementarities Morero, Hernan Innovation Complementarities Multivariate Analysis Plurality Software Sector Supermodularity |
title_short |
Multivariate analysis to research innovation complementarities |
title_full |
Multivariate analysis to research innovation complementarities |
title_fullStr |
Multivariate analysis to research innovation complementarities |
title_full_unstemmed |
Multivariate analysis to research innovation complementarities |
title_sort |
Multivariate analysis to research innovation complementarities |
dc.creator.none.fl_str_mv |
Morero, Hernan Ortiz, Pablo |
author |
Morero, Hernan |
author_facet |
Morero, Hernan Ortiz, Pablo |
author_role |
author |
author2 |
Ortiz, Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Innovation Complementarities Multivariate Analysis Plurality Software Sector Supermodularity |
topic |
Innovation Complementarities Multivariate Analysis Plurality Software Sector Supermodularity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
It is widely recognized that orthodox economics is obsessed with econometrics tools. However, econometrics techniques have a limited capacity to deal with qualitative variables coming from surveys. This paper presents a defence of the use of statistical methods, in particular multivariate analysis, which is the overall objective of the paper. Multivariate analysis is a set of methods that can be used when the problem that arises implies multiple dependent or interdependent variables of a qualitative nature. We considered an issue in the literature to probe multivariate analysis in a particular topic, namely: the question of innovation complementarities. We analyzed the presence of complementarities between internal and external innovation activities in 257 software firms from Argentina during the period 2008–2010, comparing the consideration of the problem of complementarities with the more modern complementarity econometrical tests, super and sub modularity tests arising from diverse firm-innovation function estimations (OProbit, Tobit and Probit), with the engagement of the same issue with multiple factor analysis and cluster techniques. The results show not only that the same results obtained by the econometrical tools can be reached by multivariate analysis techniques, but also that multiple factor analysis and cluster techniques allow for better exploitation of the richness of qualitative data. Fil: Morero, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Estudios sobre Cultura y Sociedad. Universidad Nacional de Córdoba. Centro de Investigaciones y Estudios sobre Cultura y Sociedad; Argentina Fil: Ortiz, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Economía; Argentina |
description |
It is widely recognized that orthodox economics is obsessed with econometrics tools. However, econometrics techniques have a limited capacity to deal with qualitative variables coming from surveys. This paper presents a defence of the use of statistical methods, in particular multivariate analysis, which is the overall objective of the paper. Multivariate analysis is a set of methods that can be used when the problem that arises implies multiple dependent or interdependent variables of a qualitative nature. We considered an issue in the literature to probe multivariate analysis in a particular topic, namely: the question of innovation complementarities. We analyzed the presence of complementarities between internal and external innovation activities in 257 software firms from Argentina during the period 2008–2010, comparing the consideration of the problem of complementarities with the more modern complementarity econometrical tests, super and sub modularity tests arising from diverse firm-innovation function estimations (OProbit, Tobit and Probit), with the engagement of the same issue with multiple factor analysis and cluster techniques. The results show not only that the same results obtained by the econometrical tools can be reached by multivariate analysis techniques, but also that multiple factor analysis and cluster techniques allow for better exploitation of the richness of qualitative data. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58286 Morero, Hernan; Ortiz, Pablo; Multivariate analysis to research innovation complementarities; Taylor & Francis; African Journal of Science, Technology, Innovation and Development; 10-2017; 1-16 2042-1338 2042-1346 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58286 |
identifier_str_mv |
Morero, Hernan; Ortiz, Pablo; Multivariate analysis to research innovation complementarities; Taylor & Francis; African Journal of Science, Technology, Innovation and Development; 10-2017; 1-16 2042-1338 2042-1346 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/20421338.2017.1355586 info:eu-repo/semantics/altIdentifier/doi/10.1080/20421338.2017.1355586 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980508616622080 |
score |
12.993085 |