Entanglement-Based dc magnetometry with separated ions

Autores
Ruster, T.; Kaufmann, H.; Luda, Marcelo Alejandro; Kaushal, V.; Schmiegelow, Christian Tomás; Schmidt-Kaler, F.; Poschinger, U.G.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type j↑↓i þ eiφj↓↑i encoded in two 40Caþ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ, which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1=2 ground state and in the D5=2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT/√Hz. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.
Fil: Ruster, T.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania
Fil: Kaufmann, H.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania
Fil: Luda, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Kaushal, V.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania
Fil: Schmiegelow, Christian Tomás. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Schmidt-Kaler, F.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania
Fil: Poschinger, U.G.. Universidad de Buenos Aires; Argentina
Materia
Computacion Cuántica
Iones Fríos
Magnetometría
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61100

id CONICETDig_3c020119073c1c39c9176ba6571b656b
oai_identifier_str oai:ri.conicet.gov.ar:11336/61100
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entanglement-Based dc magnetometry with separated ionsRuster, T.Kaufmann, H.Luda, Marcelo AlejandroKaushal, V.Schmiegelow, Christian TomásSchmidt-Kaler, F.Poschinger, U.G.Computacion CuánticaIones FríosMagnetometríahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type j↑↓i þ eiφj↓↑i encoded in two 40Caþ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ, which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1=2 ground state and in the D5=2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT/√Hz. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.Fil: Ruster, T.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; AlemaniaFil: Kaufmann, H.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; AlemaniaFil: Luda, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Kaushal, V.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; AlemaniaFil: Schmiegelow, Christian Tomás. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Schmidt-Kaler, F.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; AlemaniaFil: Poschinger, U.G.. Universidad de Buenos Aires; ArgentinaAmerican Physical Society2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61100Ruster, T.; Kaufmann, H.; Luda, Marcelo Alejandro; Kaushal, V.; Schmiegelow, Christian Tomás; et al.; Entanglement-Based dc magnetometry with separated ions; American Physical Society; Physical Review X; 7; 3; 7-2017; 31050-310502160-3308CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevX.7.031050info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevX.7.031050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:36Zoai:ri.conicet.gov.ar:11336/61100instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:36.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entanglement-Based dc magnetometry with separated ions
title Entanglement-Based dc magnetometry with separated ions
spellingShingle Entanglement-Based dc magnetometry with separated ions
Ruster, T.
Computacion Cuántica
Iones Fríos
Magnetometría
title_short Entanglement-Based dc magnetometry with separated ions
title_full Entanglement-Based dc magnetometry with separated ions
title_fullStr Entanglement-Based dc magnetometry with separated ions
title_full_unstemmed Entanglement-Based dc magnetometry with separated ions
title_sort Entanglement-Based dc magnetometry with separated ions
dc.creator.none.fl_str_mv Ruster, T.
Kaufmann, H.
Luda, Marcelo Alejandro
Kaushal, V.
Schmiegelow, Christian Tomás
Schmidt-Kaler, F.
Poschinger, U.G.
author Ruster, T.
author_facet Ruster, T.
Kaufmann, H.
Luda, Marcelo Alejandro
Kaushal, V.
Schmiegelow, Christian Tomás
Schmidt-Kaler, F.
Poschinger, U.G.
author_role author
author2 Kaufmann, H.
Luda, Marcelo Alejandro
Kaushal, V.
Schmiegelow, Christian Tomás
Schmidt-Kaler, F.
Poschinger, U.G.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Computacion Cuántica
Iones Fríos
Magnetometría
topic Computacion Cuántica
Iones Fríos
Magnetometría
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type j↑↓i þ eiφj↓↑i encoded in two 40Caþ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ, which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1=2 ground state and in the D5=2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT/√Hz. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.
Fil: Ruster, T.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania
Fil: Kaufmann, H.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania
Fil: Luda, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Kaushal, V.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania
Fil: Schmiegelow, Christian Tomás. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Schmidt-Kaler, F.. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; Alemania
Fil: Poschinger, U.G.. Universidad de Buenos Aires; Argentina
description We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type j↑↓i þ eiφj↓↑i encoded in two 40Caþ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ, which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1=2 ground state and in the D5=2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT/√Hz. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61100
Ruster, T.; Kaufmann, H.; Luda, Marcelo Alejandro; Kaushal, V.; Schmiegelow, Christian Tomás; et al.; Entanglement-Based dc magnetometry with separated ions; American Physical Society; Physical Review X; 7; 3; 7-2017; 31050-31050
2160-3308
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61100
identifier_str_mv Ruster, T.; Kaufmann, H.; Luda, Marcelo Alejandro; Kaushal, V.; Schmiegelow, Christian Tomás; et al.; Entanglement-Based dc magnetometry with separated ions; American Physical Society; Physical Review X; 7; 3; 7-2017; 31050-31050
2160-3308
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevX.7.031050
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevX.7.031050
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269648599384064
score 13.13397