Disease spreading with social distancing: A prevention strategy in disordered multiplex networks

Autores
Pérez, Ignacio Augusto; Di Muro, Matias Alberto; la Rocca, Cristian Ernesto; Braunstein, Lidia Adriana
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The frequent emergence of diseases with the potential to become threats at local and global scales, such as influenza A(H1N1), SARS, MERS, and recently COVID-19 disease, makes it crucial to keep designing models of disease propagation and strategies to prevent or mitigate their effects in populations. Since isolated systems are exceptionally rare to find in any context, especially in human contact networks, here we examine the susceptible-infected-recovered model of disease spreading in a multiplex network formed by two distinct networks or layers, interconnected through a fraction q of shared individuals (overlap). We model the interactions through weighted networks, because person-to-person interactions are diverse (or disordered); weights represent the contact times of the interactions. Using branching theory supported by simulations, we analyze a social distancing strategy that reduces the average contact time in both layers, where the intensity of the distancing is related to the topology of the layers. We find that the critical values of the distancing intensities, above which an epidemic can be prevented, increase with the overlap q. Also we study the effect of the social distancing on the mutual giant component of susceptible individuals, which is crucial to keep the functionality of the system. In addition, we find that for relatively small values of the overlap q, social distancing policies might not be needed at all to maintain the functionality of the system.
Fil: Pérez, Ignacio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Materia
COMPLEX NETWORKS
EPIDEMIC MODELS
GENERATING FUNCTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/144412

id CONICETDig_646fb99f897082c03922c81f5fe8ef67
oai_identifier_str oai:ri.conicet.gov.ar:11336/144412
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Disease spreading with social distancing: A prevention strategy in disordered multiplex networksPérez, Ignacio AugustoDi Muro, Matias Albertola Rocca, Cristian ErnestoBraunstein, Lidia AdrianaCOMPLEX NETWORKSEPIDEMIC MODELSGENERATING FUNCTIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The frequent emergence of diseases with the potential to become threats at local and global scales, such as influenza A(H1N1), SARS, MERS, and recently COVID-19 disease, makes it crucial to keep designing models of disease propagation and strategies to prevent or mitigate their effects in populations. Since isolated systems are exceptionally rare to find in any context, especially in human contact networks, here we examine the susceptible-infected-recovered model of disease spreading in a multiplex network formed by two distinct networks or layers, interconnected through a fraction q of shared individuals (overlap). We model the interactions through weighted networks, because person-to-person interactions are diverse (or disordered); weights represent the contact times of the interactions. Using branching theory supported by simulations, we analyze a social distancing strategy that reduces the average contact time in both layers, where the intensity of the distancing is related to the topology of the layers. We find that the critical values of the distancing intensities, above which an epidemic can be prevented, increase with the overlap q. Also we study the effect of the social distancing on the mutual giant component of susceptible individuals, which is crucial to keep the functionality of the system. In addition, we find that for relatively small values of the overlap q, social distancing policies might not be needed at all to maintain the functionality of the system.Fil: Pérez, Ignacio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaAmerican Physical Society2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144412Pérez, Ignacio Augusto; Di Muro, Matias Alberto; la Rocca, Cristian Ernesto; Braunstein, Lidia Adriana; Disease spreading with social distancing: A prevention strategy in disordered multiplex networks; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-102470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.022310info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.022310info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:08Zoai:ri.conicet.gov.ar:11336/144412instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:08.727CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
title Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
spellingShingle Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
Pérez, Ignacio Augusto
COMPLEX NETWORKS
EPIDEMIC MODELS
GENERATING FUNCTIONS
title_short Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
title_full Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
title_fullStr Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
title_full_unstemmed Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
title_sort Disease spreading with social distancing: A prevention strategy in disordered multiplex networks
dc.creator.none.fl_str_mv Pérez, Ignacio Augusto
Di Muro, Matias Alberto
la Rocca, Cristian Ernesto
Braunstein, Lidia Adriana
author Pérez, Ignacio Augusto
author_facet Pérez, Ignacio Augusto
Di Muro, Matias Alberto
la Rocca, Cristian Ernesto
Braunstein, Lidia Adriana
author_role author
author2 Di Muro, Matias Alberto
la Rocca, Cristian Ernesto
Braunstein, Lidia Adriana
author2_role author
author
author
dc.subject.none.fl_str_mv COMPLEX NETWORKS
EPIDEMIC MODELS
GENERATING FUNCTIONS
topic COMPLEX NETWORKS
EPIDEMIC MODELS
GENERATING FUNCTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The frequent emergence of diseases with the potential to become threats at local and global scales, such as influenza A(H1N1), SARS, MERS, and recently COVID-19 disease, makes it crucial to keep designing models of disease propagation and strategies to prevent or mitigate their effects in populations. Since isolated systems are exceptionally rare to find in any context, especially in human contact networks, here we examine the susceptible-infected-recovered model of disease spreading in a multiplex network formed by two distinct networks or layers, interconnected through a fraction q of shared individuals (overlap). We model the interactions through weighted networks, because person-to-person interactions are diverse (or disordered); weights represent the contact times of the interactions. Using branching theory supported by simulations, we analyze a social distancing strategy that reduces the average contact time in both layers, where the intensity of the distancing is related to the topology of the layers. We find that the critical values of the distancing intensities, above which an epidemic can be prevented, increase with the overlap q. Also we study the effect of the social distancing on the mutual giant component of susceptible individuals, which is crucial to keep the functionality of the system. In addition, we find that for relatively small values of the overlap q, social distancing policies might not be needed at all to maintain the functionality of the system.
Fil: Pérez, Ignacio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
description The frequent emergence of diseases with the potential to become threats at local and global scales, such as influenza A(H1N1), SARS, MERS, and recently COVID-19 disease, makes it crucial to keep designing models of disease propagation and strategies to prevent or mitigate their effects in populations. Since isolated systems are exceptionally rare to find in any context, especially in human contact networks, here we examine the susceptible-infected-recovered model of disease spreading in a multiplex network formed by two distinct networks or layers, interconnected through a fraction q of shared individuals (overlap). We model the interactions through weighted networks, because person-to-person interactions are diverse (or disordered); weights represent the contact times of the interactions. Using branching theory supported by simulations, we analyze a social distancing strategy that reduces the average contact time in both layers, where the intensity of the distancing is related to the topology of the layers. We find that the critical values of the distancing intensities, above which an epidemic can be prevented, increase with the overlap q. Also we study the effect of the social distancing on the mutual giant component of susceptible individuals, which is crucial to keep the functionality of the system. In addition, we find that for relatively small values of the overlap q, social distancing policies might not be needed at all to maintain the functionality of the system.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/144412
Pérez, Ignacio Augusto; Di Muro, Matias Alberto; la Rocca, Cristian Ernesto; Braunstein, Lidia Adriana; Disease spreading with social distancing: A prevention strategy in disordered multiplex networks; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-10
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/144412
identifier_str_mv Pérez, Ignacio Augusto; Di Muro, Matias Alberto; la Rocca, Cristian Ernesto; Braunstein, Lidia Adriana; Disease spreading with social distancing: A prevention strategy in disordered multiplex networks; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-10
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.022310
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.022310
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269503379996672
score 13.13397