Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures
- Autores
- Palomba, Damián; Vazquez, Gustavo Esteban; Diaz, Monica Fatima
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- New descriptors of main and side chains for polymers with high molecular weight are presented in order to predict the glass-transition temperature (Tg) by means of Tg/M ratio. They were obtained by molecular modeling for the middle unit in a series of three repeating units (trimer). Taken together with other classic descriptors calculated for the entire trimeric structure, the ones that correlated better with the property were selected by using a variable selection method. Only three descriptors were chosen: main chain surface area (SAMC), side chain mass (M SC) and number of rotatable bonds (RBN), where the first two descriptors belong to the set of the new ones proposed. By means of a multi-layer perceptron (MLP) neural network a good prediction model (R 2 = 0.953 and RMS = 0.25 K mol/g) was achieved and internally (R 2 = 0.964 and RMS = 0.41 K mol/g) and externally (R2 = 0.933 and RMS =0.47 K mol/g) validated. The dataset included 88 polymers. The selected descriptors and the quality of the obtained model demonstrate the advantages of capturing through computational molecular modeling the structural characteristics of the polymers' main and side chains in the prediction of Tg/M.
Fil: Palomba, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina
Fil: Vazquez, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina
Fil: Diaz, Monica Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina - Materia
-
GLASS TRANSITION TEMPERATURE
MOLECULAR MODELING
STRUCTURE-PROPERTY RELATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54366
Ver los metadatos del registro completo
id |
CONICETDig_3db24b38b8b4070c54a93043ea842a99 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54366 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperaturesPalomba, DamiánVazquez, Gustavo EstebanDiaz, Monica FatimaGLASS TRANSITION TEMPERATUREMOLECULAR MODELINGSTRUCTURE-PROPERTY RELATIONShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1New descriptors of main and side chains for polymers with high molecular weight are presented in order to predict the glass-transition temperature (Tg) by means of Tg/M ratio. They were obtained by molecular modeling for the middle unit in a series of three repeating units (trimer). Taken together with other classic descriptors calculated for the entire trimeric structure, the ones that correlated better with the property were selected by using a variable selection method. Only three descriptors were chosen: main chain surface area (SAMC), side chain mass (M SC) and number of rotatable bonds (RBN), where the first two descriptors belong to the set of the new ones proposed. By means of a multi-layer perceptron (MLP) neural network a good prediction model (R 2 = 0.953 and RMS = 0.25 K mol/g) was achieved and internally (R 2 = 0.964 and RMS = 0.41 K mol/g) and externally (R2 = 0.933 and RMS =0.47 K mol/g) validated. The dataset included 88 polymers. The selected descriptors and the quality of the obtained model demonstrate the advantages of capturing through computational molecular modeling the structural characteristics of the polymers' main and side chains in the prediction of Tg/M.Fil: Palomba, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; ArgentinaFil: Vazquez, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; ArgentinaFil: Diaz, Monica Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; ArgentinaElsevier Science Inc2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54366Palomba, Damián; Vazquez, Gustavo Esteban; Diaz, Monica Fatima; Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures; Elsevier Science Inc; Journal Of Molecular Graphics & Modelling; 38; 9-2012; 137-1471093-3263CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1093326312000435info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmgm.2012.04.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:25Zoai:ri.conicet.gov.ar:11336/54366instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:25.301CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures |
title |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures |
spellingShingle |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures Palomba, Damián GLASS TRANSITION TEMPERATURE MOLECULAR MODELING STRUCTURE-PROPERTY RELATIONS |
title_short |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures |
title_full |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures |
title_fullStr |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures |
title_full_unstemmed |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures |
title_sort |
Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures |
dc.creator.none.fl_str_mv |
Palomba, Damián Vazquez, Gustavo Esteban Diaz, Monica Fatima |
author |
Palomba, Damián |
author_facet |
Palomba, Damián Vazquez, Gustavo Esteban Diaz, Monica Fatima |
author_role |
author |
author2 |
Vazquez, Gustavo Esteban Diaz, Monica Fatima |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GLASS TRANSITION TEMPERATURE MOLECULAR MODELING STRUCTURE-PROPERTY RELATIONS |
topic |
GLASS TRANSITION TEMPERATURE MOLECULAR MODELING STRUCTURE-PROPERTY RELATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
New descriptors of main and side chains for polymers with high molecular weight are presented in order to predict the glass-transition temperature (Tg) by means of Tg/M ratio. They were obtained by molecular modeling for the middle unit in a series of three repeating units (trimer). Taken together with other classic descriptors calculated for the entire trimeric structure, the ones that correlated better with the property were selected by using a variable selection method. Only three descriptors were chosen: main chain surface area (SAMC), side chain mass (M SC) and number of rotatable bonds (RBN), where the first two descriptors belong to the set of the new ones proposed. By means of a multi-layer perceptron (MLP) neural network a good prediction model (R 2 = 0.953 and RMS = 0.25 K mol/g) was achieved and internally (R 2 = 0.964 and RMS = 0.41 K mol/g) and externally (R2 = 0.933 and RMS =0.47 K mol/g) validated. The dataset included 88 polymers. The selected descriptors and the quality of the obtained model demonstrate the advantages of capturing through computational molecular modeling the structural characteristics of the polymers' main and side chains in the prediction of Tg/M. Fil: Palomba, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina Fil: Vazquez, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina Fil: Diaz, Monica Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina |
description |
New descriptors of main and side chains for polymers with high molecular weight are presented in order to predict the glass-transition temperature (Tg) by means of Tg/M ratio. They were obtained by molecular modeling for the middle unit in a series of three repeating units (trimer). Taken together with other classic descriptors calculated for the entire trimeric structure, the ones that correlated better with the property were selected by using a variable selection method. Only three descriptors were chosen: main chain surface area (SAMC), side chain mass (M SC) and number of rotatable bonds (RBN), where the first two descriptors belong to the set of the new ones proposed. By means of a multi-layer perceptron (MLP) neural network a good prediction model (R 2 = 0.953 and RMS = 0.25 K mol/g) was achieved and internally (R 2 = 0.964 and RMS = 0.41 K mol/g) and externally (R2 = 0.933 and RMS =0.47 K mol/g) validated. The dataset included 88 polymers. The selected descriptors and the quality of the obtained model demonstrate the advantages of capturing through computational molecular modeling the structural characteristics of the polymers' main and side chains in the prediction of Tg/M. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54366 Palomba, Damián; Vazquez, Gustavo Esteban; Diaz, Monica Fatima; Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures; Elsevier Science Inc; Journal Of Molecular Graphics & Modelling; 38; 9-2012; 137-147 1093-3263 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/54366 |
identifier_str_mv |
Palomba, Damián; Vazquez, Gustavo Esteban; Diaz, Monica Fatima; Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures; Elsevier Science Inc; Journal Of Molecular Graphics & Modelling; 38; 9-2012; 137-147 1093-3263 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1093326312000435 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmgm.2012.04.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613278790057984 |
score |
13.070432 |