A comparison of spectral macroalgae taxa separability methods using an extensive spectral library
- Autores
- Rodríguez, Yolanda Chao; Domínguez Gómez, José Antonio; Sanchez Carnero, Noela Belen; Rodríguez-Pérez, Daniel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Remote sensing is one the most promising approaches to coastal area cartography, including mapping algae forests. After discrimination of algal communities from other benthic habitats, next step is species discrimination (from other algae). Spectral signature provides the most complete remote description to characterize any algae. In this work spectral signatures are studied from the point of view of taxa separability to assess the potential use of remote sensors to map seaweed in coastal waters. Three approaches were tested: Red-Green-Brown colorimetry (sRGB), optimal spectral boundary separation based on True Skill Statistics (TSS-OB), and pigment absorbance band detection by Derivative Spectroscopy (DS). An extensive spectral library of 36 algal species present in the Atlantic Galician coast (NW of Spain) is used to test and validate these methods. The results show that the three broad taxa of red, green and brown algae can be separated by all three methods (Cohen's kappa of 0.697, 0.891 and 0.910, respectively). The TSS-OB and the DS approaches provide almost perfect classification (despite some anomalous specimens), with DS being slightly better. The sRGB approach, useful for in situ photographic classification, also provides good results.
Fil: Rodríguez, Yolanda Chao. Universidad Nacional de Educacion a Distancia; España
Fil: Domínguez Gómez, José Antonio. Universidad Nacional de Educacion a Distancia; España
Fil: Sanchez Carnero, Noela Belen. Universidad de Vigo; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina
Fil: Rodríguez-Pérez, Daniel. Universidad Nacional de Educacion a Distancia; España - Materia
-
Algae Species
Colorimetry
Photosynthetic Pigments
Spectral Classification
Spectral Library
True Skill Statistics (Tss) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/36301
Ver los metadatos del registro completo
id |
CONICETDig_39780202da551776c2598b79f62c62bd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/36301 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral libraryRodríguez, Yolanda ChaoDomínguez Gómez, José AntonioSanchez Carnero, Noela BelenRodríguez-Pérez, DanielAlgae SpeciesColorimetryPhotosynthetic PigmentsSpectral ClassificationSpectral LibraryTrue Skill Statistics (Tss)https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Remote sensing is one the most promising approaches to coastal area cartography, including mapping algae forests. After discrimination of algal communities from other benthic habitats, next step is species discrimination (from other algae). Spectral signature provides the most complete remote description to characterize any algae. In this work spectral signatures are studied from the point of view of taxa separability to assess the potential use of remote sensors to map seaweed in coastal waters. Three approaches were tested: Red-Green-Brown colorimetry (sRGB), optimal spectral boundary separation based on True Skill Statistics (TSS-OB), and pigment absorbance band detection by Derivative Spectroscopy (DS). An extensive spectral library of 36 algal species present in the Atlantic Galician coast (NW of Spain) is used to test and validate these methods. The results show that the three broad taxa of red, green and brown algae can be separated by all three methods (Cohen's kappa of 0.697, 0.891 and 0.910, respectively). The TSS-OB and the DS approaches provide almost perfect classification (despite some anomalous specimens), with DS being slightly better. The sRGB approach, useful for in situ photographic classification, also provides good results.Fil: Rodríguez, Yolanda Chao. Universidad Nacional de Educacion a Distancia; EspañaFil: Domínguez Gómez, José Antonio. Universidad Nacional de Educacion a Distancia; EspañaFil: Sanchez Carnero, Noela Belen. Universidad de Vigo; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Rodríguez-Pérez, Daniel. Universidad Nacional de Educacion a Distancia; EspañaElsevier B.V.2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36301Rodríguez, Yolanda Chao; Domínguez Gómez, José Antonio; Sanchez Carnero, Noela Belen; Rodríguez-Pérez, Daniel; A comparison of spectral macroalgae taxa separability methods using an extensive spectral library; Elsevier B.V.; Algal Research; 26; 9-2017; 463-4732211-9264CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.algal.2017.04.021info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2211926416304040?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:46Zoai:ri.conicet.gov.ar:11336/36301instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:47.02CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral library |
title |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral library |
spellingShingle |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral library Rodríguez, Yolanda Chao Algae Species Colorimetry Photosynthetic Pigments Spectral Classification Spectral Library True Skill Statistics (Tss) |
title_short |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral library |
title_full |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral library |
title_fullStr |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral library |
title_full_unstemmed |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral library |
title_sort |
A comparison of spectral macroalgae taxa separability methods using an extensive spectral library |
dc.creator.none.fl_str_mv |
Rodríguez, Yolanda Chao Domínguez Gómez, José Antonio Sanchez Carnero, Noela Belen Rodríguez-Pérez, Daniel |
author |
Rodríguez, Yolanda Chao |
author_facet |
Rodríguez, Yolanda Chao Domínguez Gómez, José Antonio Sanchez Carnero, Noela Belen Rodríguez-Pérez, Daniel |
author_role |
author |
author2 |
Domínguez Gómez, José Antonio Sanchez Carnero, Noela Belen Rodríguez-Pérez, Daniel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Algae Species Colorimetry Photosynthetic Pigments Spectral Classification Spectral Library True Skill Statistics (Tss) |
topic |
Algae Species Colorimetry Photosynthetic Pigments Spectral Classification Spectral Library True Skill Statistics (Tss) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Remote sensing is one the most promising approaches to coastal area cartography, including mapping algae forests. After discrimination of algal communities from other benthic habitats, next step is species discrimination (from other algae). Spectral signature provides the most complete remote description to characterize any algae. In this work spectral signatures are studied from the point of view of taxa separability to assess the potential use of remote sensors to map seaweed in coastal waters. Three approaches were tested: Red-Green-Brown colorimetry (sRGB), optimal spectral boundary separation based on True Skill Statistics (TSS-OB), and pigment absorbance band detection by Derivative Spectroscopy (DS). An extensive spectral library of 36 algal species present in the Atlantic Galician coast (NW of Spain) is used to test and validate these methods. The results show that the three broad taxa of red, green and brown algae can be separated by all three methods (Cohen's kappa of 0.697, 0.891 and 0.910, respectively). The TSS-OB and the DS approaches provide almost perfect classification (despite some anomalous specimens), with DS being slightly better. The sRGB approach, useful for in situ photographic classification, also provides good results. Fil: Rodríguez, Yolanda Chao. Universidad Nacional de Educacion a Distancia; España Fil: Domínguez Gómez, José Antonio. Universidad Nacional de Educacion a Distancia; España Fil: Sanchez Carnero, Noela Belen. Universidad de Vigo; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina Fil: Rodríguez-Pérez, Daniel. Universidad Nacional de Educacion a Distancia; España |
description |
Remote sensing is one the most promising approaches to coastal area cartography, including mapping algae forests. After discrimination of algal communities from other benthic habitats, next step is species discrimination (from other algae). Spectral signature provides the most complete remote description to characterize any algae. In this work spectral signatures are studied from the point of view of taxa separability to assess the potential use of remote sensors to map seaweed in coastal waters. Three approaches were tested: Red-Green-Brown colorimetry (sRGB), optimal spectral boundary separation based on True Skill Statistics (TSS-OB), and pigment absorbance band detection by Derivative Spectroscopy (DS). An extensive spectral library of 36 algal species present in the Atlantic Galician coast (NW of Spain) is used to test and validate these methods. The results show that the three broad taxa of red, green and brown algae can be separated by all three methods (Cohen's kappa of 0.697, 0.891 and 0.910, respectively). The TSS-OB and the DS approaches provide almost perfect classification (despite some anomalous specimens), with DS being slightly better. The sRGB approach, useful for in situ photographic classification, also provides good results. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/36301 Rodríguez, Yolanda Chao; Domínguez Gómez, José Antonio; Sanchez Carnero, Noela Belen; Rodríguez-Pérez, Daniel; A comparison of spectral macroalgae taxa separability methods using an extensive spectral library; Elsevier B.V.; Algal Research; 26; 9-2017; 463-473 2211-9264 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/36301 |
identifier_str_mv |
Rodríguez, Yolanda Chao; Domínguez Gómez, José Antonio; Sanchez Carnero, Noela Belen; Rodríguez-Pérez, Daniel; A comparison of spectral macroalgae taxa separability methods using an extensive spectral library; Elsevier B.V.; Algal Research; 26; 9-2017; 463-473 2211-9264 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.algal.2017.04.021 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2211926416304040?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082803336216576 |
score |
13.22299 |