How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia)
- Autores
- Olmedo Masat, Olga Magalí; Raffo, María Paula; Rodríguez Pérez, Daniel; Arijón, Marianela; Sanchez Carnero, Noela Belen
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Macroalgae have attracted the interest of remote sensing as targets to study coastal marine ecosystems because of their key ecological role. The goal of this paper is to analyze a new spectral library, including 28 macroalgae from the South-West Atlantic coast, in order to assess its use in hyperspectral remote sensing. The library includes species collected in the Atlantic Patagonian coast (Argentina) with representatives of brown, red, and green algae, being 22 of the species included in a spectral library for the first time. The spectra of these main groups are described, and the intraspecific variability is also assessed, considering kelp differentiated tissues and depth range, discussing them from the point of view of their effects on spectral features. A classification and an independent component analysis using the spectral range and simulated bands of two state-of-the-art drone-borne hyperspectral sensors were performed. The results show spectral features and clusters identifying further algae taxonomic groups, showing the potential applications of this spectral library for drone-based mapping of this ecological and economical asset of our coastal marine ecosystems.
Fil: Olmedo Masat, Olga Magalí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina
Fil: Raffo, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina
Fil: Rodríguez Pérez, Daniel. Universidad Nacional de Educación a Distancia; España
Fil: Arijón, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina
Fil: Sanchez Carnero, Noela Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina - Materia
-
COASTAL MACROALGAE
HYPERSPECTRAL SENSORS
SPECTRAL FEATURES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/153187
Ver los metadatos del registro completo
id |
CONICETDig_cc203c6531b52a44574e98b75f5d0692 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/153187 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia)Olmedo Masat, Olga MagalíRaffo, María PaulaRodríguez Pérez, DanielArijón, MarianelaSanchez Carnero, Noela BelenCOASTAL MACROALGAEHYPERSPECTRAL SENSORSSPECTRAL FEATUREShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Macroalgae have attracted the interest of remote sensing as targets to study coastal marine ecosystems because of their key ecological role. The goal of this paper is to analyze a new spectral library, including 28 macroalgae from the South-West Atlantic coast, in order to assess its use in hyperspectral remote sensing. The library includes species collected in the Atlantic Patagonian coast (Argentina) with representatives of brown, red, and green algae, being 22 of the species included in a spectral library for the first time. The spectra of these main groups are described, and the intraspecific variability is also assessed, considering kelp differentiated tissues and depth range, discussing them from the point of view of their effects on spectral features. A classification and an independent component analysis using the spectral range and simulated bands of two state-of-the-art drone-borne hyperspectral sensors were performed. The results show spectral features and clusters identifying further algae taxonomic groups, showing the potential applications of this spectral library for drone-based mapping of this ecological and economical asset of our coastal marine ecosystems.Fil: Olmedo Masat, Olga Magalí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Raffo, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Rodríguez Pérez, Daniel. Universidad Nacional de Educación a Distancia; EspañaFil: Arijón, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Sanchez Carnero, Noela Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaMDPI AG2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153187Olmedo Masat, Olga Magalí; Raffo, María Paula; Rodríguez Pérez, Daniel; Arijón, Marianela; Sanchez Carnero, Noela Belen; How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia); MDPI AG; Remote Sensing; 12; 23; 12-2020; 1-332072-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/12/23/3870info:eu-repo/semantics/altIdentifier/doi/10.3390/rs12233870info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:45:23Zoai:ri.conicet.gov.ar:11336/153187instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:45:23.311CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia) |
title |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia) |
spellingShingle |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia) Olmedo Masat, Olga Magalí COASTAL MACROALGAE HYPERSPECTRAL SENSORS SPECTRAL FEATURES |
title_short |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia) |
title_full |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia) |
title_fullStr |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia) |
title_full_unstemmed |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia) |
title_sort |
How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia) |
dc.creator.none.fl_str_mv |
Olmedo Masat, Olga Magalí Raffo, María Paula Rodríguez Pérez, Daniel Arijón, Marianela Sanchez Carnero, Noela Belen |
author |
Olmedo Masat, Olga Magalí |
author_facet |
Olmedo Masat, Olga Magalí Raffo, María Paula Rodríguez Pérez, Daniel Arijón, Marianela Sanchez Carnero, Noela Belen |
author_role |
author |
author2 |
Raffo, María Paula Rodríguez Pérez, Daniel Arijón, Marianela Sanchez Carnero, Noela Belen |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
COASTAL MACROALGAE HYPERSPECTRAL SENSORS SPECTRAL FEATURES |
topic |
COASTAL MACROALGAE HYPERSPECTRAL SENSORS SPECTRAL FEATURES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Macroalgae have attracted the interest of remote sensing as targets to study coastal marine ecosystems because of their key ecological role. The goal of this paper is to analyze a new spectral library, including 28 macroalgae from the South-West Atlantic coast, in order to assess its use in hyperspectral remote sensing. The library includes species collected in the Atlantic Patagonian coast (Argentina) with representatives of brown, red, and green algae, being 22 of the species included in a spectral library for the first time. The spectra of these main groups are described, and the intraspecific variability is also assessed, considering kelp differentiated tissues and depth range, discussing them from the point of view of their effects on spectral features. A classification and an independent component analysis using the spectral range and simulated bands of two state-of-the-art drone-borne hyperspectral sensors were performed. The results show spectral features and clusters identifying further algae taxonomic groups, showing the potential applications of this spectral library for drone-based mapping of this ecological and economical asset of our coastal marine ecosystems. Fil: Olmedo Masat, Olga Magalí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina Fil: Raffo, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina Fil: Rodríguez Pérez, Daniel. Universidad Nacional de Educación a Distancia; España Fil: Arijón, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina Fil: Sanchez Carnero, Noela Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina |
description |
Macroalgae have attracted the interest of remote sensing as targets to study coastal marine ecosystems because of their key ecological role. The goal of this paper is to analyze a new spectral library, including 28 macroalgae from the South-West Atlantic coast, in order to assess its use in hyperspectral remote sensing. The library includes species collected in the Atlantic Patagonian coast (Argentina) with representatives of brown, red, and green algae, being 22 of the species included in a spectral library for the first time. The spectra of these main groups are described, and the intraspecific variability is also assessed, considering kelp differentiated tissues and depth range, discussing them from the point of view of their effects on spectral features. A classification and an independent component analysis using the spectral range and simulated bands of two state-of-the-art drone-borne hyperspectral sensors were performed. The results show spectral features and clusters identifying further algae taxonomic groups, showing the potential applications of this spectral library for drone-based mapping of this ecological and economical asset of our coastal marine ecosystems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/153187 Olmedo Masat, Olga Magalí; Raffo, María Paula; Rodríguez Pérez, Daniel; Arijón, Marianela; Sanchez Carnero, Noela Belen; How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia); MDPI AG; Remote Sensing; 12; 23; 12-2020; 1-33 2072-4292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/153187 |
identifier_str_mv |
Olmedo Masat, Olga Magalí; Raffo, María Paula; Rodríguez Pérez, Daniel; Arijón, Marianela; Sanchez Carnero, Noela Belen; How far can we classify macroalgae remotely? An example using a new spectral library of species from the south west atlantic (argentine patagonia); MDPI AG; Remote Sensing; 12; 23; 12-2020; 1-33 2072-4292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/12/23/3870 info:eu-repo/semantics/altIdentifier/doi/10.3390/rs12233870 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083553873362944 |
score |
13.22299 |