Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli

Autores
Alberti, Sebastián; Soler Illia, Galo Juan de Avila Arturo; Azzaroni, Omar
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This review presents and discusses recent advances in the emerging field of  "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide repertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of the promising future in the development of mesoporous platforms that can control mass transport on command through the combination of flexible supramolecular routes, with implications on health, environment and energy.
Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Comision Nacional de Energia Atomica. Gerencia Química. CAC; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Gerencia Química. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Materia
Mesoporous Materials
Gated Supramolecular Chemistry
Drug Delivery
Supramolecular Materials
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5039

id CONICETDig_38d4f27ca72c3c232f848cffa01e2438
oai_identifier_str oai:ri.conicet.gov.ar:11336/5039
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuliAlberti, SebastiánSoler Illia, Galo Juan de Avila ArturoAzzaroni, OmarMesoporous MaterialsGated Supramolecular ChemistryDrug DeliverySupramolecular Materialshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This review presents and discusses recent advances in the emerging field of  "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide repertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of the promising future in the development of mesoporous platforms that can control mass transport on command through the combination of flexible supramolecular routes, with implications on health, environment and energy.Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Comision Nacional de Energia Atomica. Gerencia Química. CAC; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Gerencia Química. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaRoyal Society Of Chemistry2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5039Alberti, Sebastián; Soler Illia, Galo Juan de Avila Arturo; Azzaroni, Omar; Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli; Royal Society Of Chemistry; Chemical Communications; 51; 28; 5-2015; 6050-60751359-7345enginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C4CC10414Einfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2015/cc/c4cc10414einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:21Zoai:ri.conicet.gov.ar:11336/5039instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:22.096CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
title Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
spellingShingle Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
Alberti, Sebastián
Mesoporous Materials
Gated Supramolecular Chemistry
Drug Delivery
Supramolecular Materials
title_short Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
title_full Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
title_fullStr Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
title_full_unstemmed Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
title_sort Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
dc.creator.none.fl_str_mv Alberti, Sebastián
Soler Illia, Galo Juan de Avila Arturo
Azzaroni, Omar
author Alberti, Sebastián
author_facet Alberti, Sebastián
Soler Illia, Galo Juan de Avila Arturo
Azzaroni, Omar
author_role author
author2 Soler Illia, Galo Juan de Avila Arturo
Azzaroni, Omar
author2_role author
author
dc.subject.none.fl_str_mv Mesoporous Materials
Gated Supramolecular Chemistry
Drug Delivery
Supramolecular Materials
topic Mesoporous Materials
Gated Supramolecular Chemistry
Drug Delivery
Supramolecular Materials
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This review presents and discusses recent advances in the emerging field of  "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide repertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of the promising future in the development of mesoporous platforms that can control mass transport on command through the combination of flexible supramolecular routes, with implications on health, environment and energy.
Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Comision Nacional de Energia Atomica. Gerencia Química. CAC; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Gerencia Química. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
description This review presents and discusses recent advances in the emerging field of  "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide repertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of the promising future in the development of mesoporous platforms that can control mass transport on command through the combination of flexible supramolecular routes, with implications on health, environment and energy.
publishDate 2015
dc.date.none.fl_str_mv 2015-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5039
Alberti, Sebastián; Soler Illia, Galo Juan de Avila Arturo; Azzaroni, Omar; Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli; Royal Society Of Chemistry; Chemical Communications; 51; 28; 5-2015; 6050-6075
1359-7345
url http://hdl.handle.net/11336/5039
identifier_str_mv Alberti, Sebastián; Soler Illia, Galo Juan de Avila Arturo; Azzaroni, Omar; Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli; Royal Society Of Chemistry; Chemical Communications; 51; 28; 5-2015; 6050-6075
1359-7345
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/C4CC10414E
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2015/cc/c4cc10414e
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society Of Chemistry
publisher.none.fl_str_mv Royal Society Of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613024957071360
score 13.070432