Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli
- Autores
- Alberti, Sebastián; Soler Illia, Galo Juan de Avila Arturo; Azzaroni, Omar
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This review presents and discusses recent advances in the emerging field of "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide repertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of the promising future in the development of mesoporous platforms that can control mass transport on command through the combination of flexible supramolecular routes, with implications on health, environment and energy.
Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Comision Nacional de Energia Atomica. Gerencia Química. CAC; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Gerencia Química. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Mesoporous Materials
Gated Supramolecular Chemistry
Drug Delivery
Supramolecular Materials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5039
Ver los metadatos del registro completo
id |
CONICETDig_38d4f27ca72c3c232f848cffa01e2438 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5039 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuliAlberti, SebastiánSoler Illia, Galo Juan de Avila ArturoAzzaroni, OmarMesoporous MaterialsGated Supramolecular ChemistryDrug DeliverySupramolecular Materialshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This review presents and discusses recent advances in the emerging field of "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide repertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of the promising future in the development of mesoporous platforms that can control mass transport on command through the combination of flexible supramolecular routes, with implications on health, environment and energy.Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Comision Nacional de Energia Atomica. Gerencia Química. CAC; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Gerencia Química. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaRoyal Society Of Chemistry2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5039Alberti, Sebastián; Soler Illia, Galo Juan de Avila Arturo; Azzaroni, Omar; Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli; Royal Society Of Chemistry; Chemical Communications; 51; 28; 5-2015; 6050-60751359-7345enginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C4CC10414Einfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2015/cc/c4cc10414einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:21Zoai:ri.conicet.gov.ar:11336/5039instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:22.096CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli |
title |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli |
spellingShingle |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli Alberti, Sebastián Mesoporous Materials Gated Supramolecular Chemistry Drug Delivery Supramolecular Materials |
title_short |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli |
title_full |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli |
title_fullStr |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli |
title_full_unstemmed |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli |
title_sort |
Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli |
dc.creator.none.fl_str_mv |
Alberti, Sebastián Soler Illia, Galo Juan de Avila Arturo Azzaroni, Omar |
author |
Alberti, Sebastián |
author_facet |
Alberti, Sebastián Soler Illia, Galo Juan de Avila Arturo Azzaroni, Omar |
author_role |
author |
author2 |
Soler Illia, Galo Juan de Avila Arturo Azzaroni, Omar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Mesoporous Materials Gated Supramolecular Chemistry Drug Delivery Supramolecular Materials |
topic |
Mesoporous Materials Gated Supramolecular Chemistry Drug Delivery Supramolecular Materials |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This review presents and discusses recent advances in the emerging field of "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide repertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of the promising future in the development of mesoporous platforms that can control mass transport on command through the combination of flexible supramolecular routes, with implications on health, environment and energy. Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Comision Nacional de Energia Atomica. Gerencia Química. CAC; Argentina Fil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Gerencia Química. CAC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
This review presents and discusses recent advances in the emerging field of "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide repertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of the promising future in the development of mesoporous platforms that can control mass transport on command through the combination of flexible supramolecular routes, with implications on health, environment and energy. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5039 Alberti, Sebastián; Soler Illia, Galo Juan de Avila Arturo; Azzaroni, Omar; Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli; Royal Society Of Chemistry; Chemical Communications; 51; 28; 5-2015; 6050-6075 1359-7345 |
url |
http://hdl.handle.net/11336/5039 |
identifier_str_mv |
Alberti, Sebastián; Soler Illia, Galo Juan de Avila Arturo; Azzaroni, Omar; Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli; Royal Society Of Chemistry; Chemical Communications; 51; 28; 5-2015; 6050-6075 1359-7345 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C4CC10414E info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2015/cc/c4cc10414e |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society Of Chemistry |
publisher.none.fl_str_mv |
Royal Society Of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613024957071360 |
score |
13.070432 |