Templex: A bridge between homologies and templates for chaotic attractors

Autores
Charó, Gisela Daniela; Letellier, Christophe; Sciamarella, Denisse
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The theory of homologies introduces cell complexes to provide an algebraic description of spaces up to topological equivalence. Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its topology. The approach, however, does not consider the action of the flow on the cell complex. The procedure is here extended to take this fundamental property into account, as done with templates. The goal is achieved endowing the cell complex with a directed graph that prescribes the flow direction between its highest-dimensional cells. The tandem of cell complex and directed graph, baptized templex, is shown to allow for a sophisticated characterization of chaotic attractors and for an accurate classification of them. The cases of a few well-known chaotic attractors are investigated - namely, the spiral and funnel Rössler attractors, the Lorenz attractor, the Burke and Shaw attractor, and a four-dimensional system. A link is established with their description in terms of templates.
Fil: Charó, Gisela Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Letellier, Christophe. No especifíca;
Fil: Sciamarella, Denisse. Instituto Franco-argentino Sobre Estudios del Clima y Sus Impactos.; Argentina
Materia
Nonlinear science
Algebraic topology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214154

id CONICETDig_38cd0d5631945e89a7b5dfd8760641f1
oai_identifier_str oai:ri.conicet.gov.ar:11336/214154
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Templex: A bridge between homologies and templates for chaotic attractorsCharó, Gisela DanielaLetellier, ChristopheSciamarella, DenisseNonlinear scienceAlgebraic topologyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The theory of homologies introduces cell complexes to provide an algebraic description of spaces up to topological equivalence. Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its topology. The approach, however, does not consider the action of the flow on the cell complex. The procedure is here extended to take this fundamental property into account, as done with templates. The goal is achieved endowing the cell complex with a directed graph that prescribes the flow direction between its highest-dimensional cells. The tandem of cell complex and directed graph, baptized templex, is shown to allow for a sophisticated characterization of chaotic attractors and for an accurate classification of them. The cases of a few well-known chaotic attractors are investigated - namely, the spiral and funnel Rössler attractors, the Lorenz attractor, the Burke and Shaw attractor, and a four-dimensional system. A link is established with their description in terms of templates.Fil: Charó, Gisela Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Letellier, Christophe. No especifíca;Fil: Sciamarella, Denisse. Instituto Franco-argentino Sobre Estudios del Clima y Sus Impactos.; ArgentinaAmerican Institute of Physics2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214154Charó, Gisela Daniela; Letellier, Christophe; Sciamarella, Denisse; Templex: A bridge between homologies and templates for chaotic attractors; American Institute of Physics; Chaos; 32; 8; 8-2022; 1-241054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0092933info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0092933info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:56Zoai:ri.conicet.gov.ar:11336/214154instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:56.314CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Templex: A bridge between homologies and templates for chaotic attractors
title Templex: A bridge between homologies and templates for chaotic attractors
spellingShingle Templex: A bridge between homologies and templates for chaotic attractors
Charó, Gisela Daniela
Nonlinear science
Algebraic topology
title_short Templex: A bridge between homologies and templates for chaotic attractors
title_full Templex: A bridge between homologies and templates for chaotic attractors
title_fullStr Templex: A bridge between homologies and templates for chaotic attractors
title_full_unstemmed Templex: A bridge between homologies and templates for chaotic attractors
title_sort Templex: A bridge between homologies and templates for chaotic attractors
dc.creator.none.fl_str_mv Charó, Gisela Daniela
Letellier, Christophe
Sciamarella, Denisse
author Charó, Gisela Daniela
author_facet Charó, Gisela Daniela
Letellier, Christophe
Sciamarella, Denisse
author_role author
author2 Letellier, Christophe
Sciamarella, Denisse
author2_role author
author
dc.subject.none.fl_str_mv Nonlinear science
Algebraic topology
topic Nonlinear science
Algebraic topology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The theory of homologies introduces cell complexes to provide an algebraic description of spaces up to topological equivalence. Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its topology. The approach, however, does not consider the action of the flow on the cell complex. The procedure is here extended to take this fundamental property into account, as done with templates. The goal is achieved endowing the cell complex with a directed graph that prescribes the flow direction between its highest-dimensional cells. The tandem of cell complex and directed graph, baptized templex, is shown to allow for a sophisticated characterization of chaotic attractors and for an accurate classification of them. The cases of a few well-known chaotic attractors are investigated - namely, the spiral and funnel Rössler attractors, the Lorenz attractor, the Burke and Shaw attractor, and a four-dimensional system. A link is established with their description in terms of templates.
Fil: Charó, Gisela Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Letellier, Christophe. No especifíca;
Fil: Sciamarella, Denisse. Instituto Franco-argentino Sobre Estudios del Clima y Sus Impactos.; Argentina
description The theory of homologies introduces cell complexes to provide an algebraic description of spaces up to topological equivalence. Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its topology. The approach, however, does not consider the action of the flow on the cell complex. The procedure is here extended to take this fundamental property into account, as done with templates. The goal is achieved endowing the cell complex with a directed graph that prescribes the flow direction between its highest-dimensional cells. The tandem of cell complex and directed graph, baptized templex, is shown to allow for a sophisticated characterization of chaotic attractors and for an accurate classification of them. The cases of a few well-known chaotic attractors are investigated - namely, the spiral and funnel Rössler attractors, the Lorenz attractor, the Burke and Shaw attractor, and a four-dimensional system. A link is established with their description in terms of templates.
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214154
Charó, Gisela Daniela; Letellier, Christophe; Sciamarella, Denisse; Templex: A bridge between homologies and templates for chaotic attractors; American Institute of Physics; Chaos; 32; 8; 8-2022; 1-24
1054-1500
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214154
identifier_str_mv Charó, Gisela Daniela; Letellier, Christophe; Sciamarella, Denisse; Templex: A bridge between homologies and templates for chaotic attractors; American Institute of Physics; Chaos; 32; 8; 8-2022; 1-24
1054-1500
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0092933
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0092933
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781832798928896
score 12.982451