The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- Autores
- Birgin, Ernesto G.; Fernández Ferreyra, Damián Roberto; Martínez, J. M.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Fil: Birgin, Ernesto G.. Universidade de Sao Paulo; Brasil
Fil: Fernández Ferreyra, Damián Roberto. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Martínez, J. M.. Universidade Estadual de Campinas; Brasil - Materia
-
Augmented Lagrangian Methods
Nonlinear Programming
Numerical Experiments
Penalty Parameters - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/81242
Ver los metadatos del registro completo
id |
CONICETDig_385607dabf9b6b2ebb349072d0b8006e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/81242 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblemsBirgin, Ernesto G.Fernández Ferreyra, Damián RobertoMartínez, J. M.Augmented Lagrangian MethodsNonlinear ProgrammingNumerical ExperimentsPenalty Parametershttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.Fil: Birgin, Ernesto G.. Universidade de Sao Paulo; BrasilFil: Fernández Ferreyra, Damián Roberto. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Martínez, J. M.. Universidade Estadual de Campinas; BrasilTaylor & Francis Ltd2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81242Birgin, Ernesto G.; Fernández Ferreyra, Damián Roberto; Martínez, J. M.; The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems; Taylor & Francis Ltd; Optimization Methods And Software; 27; 6; 12-2012; 1001-10241055-67881029-4937CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/10556788.2011.556634info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10556788.2011.556634info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:09Zoai:ri.conicet.gov.ar:11336/81242instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:09.794CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems |
title |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems |
spellingShingle |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems Birgin, Ernesto G. Augmented Lagrangian Methods Nonlinear Programming Numerical Experiments Penalty Parameters |
title_short |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems |
title_full |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems |
title_fullStr |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems |
title_full_unstemmed |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems |
title_sort |
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems |
dc.creator.none.fl_str_mv |
Birgin, Ernesto G. Fernández Ferreyra, Damián Roberto Martínez, J. M. |
author |
Birgin, Ernesto G. |
author_facet |
Birgin, Ernesto G. Fernández Ferreyra, Damián Roberto Martínez, J. M. |
author_role |
author |
author2 |
Fernández Ferreyra, Damián Roberto Martínez, J. M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Augmented Lagrangian Methods Nonlinear Programming Numerical Experiments Penalty Parameters |
topic |
Augmented Lagrangian Methods Nonlinear Programming Numerical Experiments Penalty Parameters |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented. Fil: Birgin, Ernesto G.. Universidade de Sao Paulo; Brasil Fil: Fernández Ferreyra, Damián Roberto. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Martínez, J. M.. Universidade Estadual de Campinas; Brasil |
description |
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/81242 Birgin, Ernesto G.; Fernández Ferreyra, Damián Roberto; Martínez, J. M.; The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems; Taylor & Francis Ltd; Optimization Methods And Software; 27; 6; 12-2012; 1001-1024 1055-6788 1029-4937 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/81242 |
identifier_str_mv |
Birgin, Ernesto G.; Fernández Ferreyra, Damián Roberto; Martínez, J. M.; The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems; Taylor & Francis Ltd; Optimization Methods And Software; 27; 6; 12-2012; 1001-1024 1055-6788 1029-4937 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/10556788.2011.556634 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10556788.2011.556634 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269140189970432 |
score |
13.13397 |