Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
- Autores
- Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Sabattini, Rafael Alberto; López, Ricardo L.; Vigna, Mario Raul; Gigón, Ramón
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable precipitation regime. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their capacity to describe highly non-linear relationships among variables thus showing a high potential applicability in ecological systems. The objectives of the present work were to develop different ANN models for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear regression techniques. Classical hydrothermal-time indices were used as input variable for the development of univariate models, while thermal-time and hydro-time were used as independent input variables for developing bivariate models. The accumulated proportion of seedling emergence was the output variable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Obtained results indicate a higher accuracy and generalization performance of the optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields better prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% better in average than the best developed NLR model. These outcomes suggest the potential applicability of the proposed modeling approach in weed management decision support systems design.
Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sabattini, Rafael Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: López, Ricardo L.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Vigna, Mario Raul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina - Materia
-
Wild Oat
Hydorthermal Time
Semiarid Region
Emergence Prediction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53770
Ver los metadatos del registro completo
id |
CONICETDig_37e9af1f8507e7485dafc9458b39c770 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53770 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approachChantre Balacca, Guillermo RubenBlanco, Anibal ManuelLodovichi, Mariela VictoriaBandoni, Jose AlbertoSabattini, Rafael AlbertoLópez, Ricardo L.Vigna, Mario RaulGigón, RamónWild OatHydorthermal TimeSemiarid RegionEmergence Predictionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable precipitation regime. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their capacity to describe highly non-linear relationships among variables thus showing a high potential applicability in ecological systems. The objectives of the present work were to develop different ANN models for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear regression techniques. Classical hydrothermal-time indices were used as input variable for the development of univariate models, while thermal-time and hydro-time were used as independent input variables for developing bivariate models. The accumulated proportion of seedling emergence was the output variable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Obtained results indicate a higher accuracy and generalization performance of the optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields better prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% better in average than the best developed NLR model. These outcomes suggest the potential applicability of the proposed modeling approach in weed management decision support systems design.Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sabattini, Rafael Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: López, Ricardo L.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Vigna, Mario Raul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; ArgentinaElsevier2012-08-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53770Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Sabattini, Rafael Alberto; et al.; Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach; Elsevier; Computers and Eletronics in Agriculture; 88; 11-8-2012; 95-1020168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2012.07.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169912001901info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:50Zoai:ri.conicet.gov.ar:11336/53770instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:50.368CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach |
title |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach |
spellingShingle |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach Chantre Balacca, Guillermo Ruben Wild Oat Hydorthermal Time Semiarid Region Emergence Prediction |
title_short |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach |
title_full |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach |
title_fullStr |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach |
title_full_unstemmed |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach |
title_sort |
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach |
dc.creator.none.fl_str_mv |
Chantre Balacca, Guillermo Ruben Blanco, Anibal Manuel Lodovichi, Mariela Victoria Bandoni, Jose Alberto Sabattini, Rafael Alberto López, Ricardo L. Vigna, Mario Raul Gigón, Ramón |
author |
Chantre Balacca, Guillermo Ruben |
author_facet |
Chantre Balacca, Guillermo Ruben Blanco, Anibal Manuel Lodovichi, Mariela Victoria Bandoni, Jose Alberto Sabattini, Rafael Alberto López, Ricardo L. Vigna, Mario Raul Gigón, Ramón |
author_role |
author |
author2 |
Blanco, Anibal Manuel Lodovichi, Mariela Victoria Bandoni, Jose Alberto Sabattini, Rafael Alberto López, Ricardo L. Vigna, Mario Raul Gigón, Ramón |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Wild Oat Hydorthermal Time Semiarid Region Emergence Prediction |
topic |
Wild Oat Hydorthermal Time Semiarid Region Emergence Prediction |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable precipitation regime. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their capacity to describe highly non-linear relationships among variables thus showing a high potential applicability in ecological systems. The objectives of the present work were to develop different ANN models for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear regression techniques. Classical hydrothermal-time indices were used as input variable for the development of univariate models, while thermal-time and hydro-time were used as independent input variables for developing bivariate models. The accumulated proportion of seedling emergence was the output variable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Obtained results indicate a higher accuracy and generalization performance of the optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields better prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% better in average than the best developed NLR model. These outcomes suggest the potential applicability of the proposed modeling approach in weed management decision support systems design. Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Sabattini, Rafael Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina Fil: López, Ricardo L.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina Fil: Vigna, Mario Raul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina Fil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina |
description |
Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable precipitation regime. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their capacity to describe highly non-linear relationships among variables thus showing a high potential applicability in ecological systems. The objectives of the present work were to develop different ANN models for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear regression techniques. Classical hydrothermal-time indices were used as input variable for the development of univariate models, while thermal-time and hydro-time were used as independent input variables for developing bivariate models. The accumulated proportion of seedling emergence was the output variable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Obtained results indicate a higher accuracy and generalization performance of the optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields better prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% better in average than the best developed NLR model. These outcomes suggest the potential applicability of the proposed modeling approach in weed management decision support systems design. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53770 Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Sabattini, Rafael Alberto; et al.; Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach; Elsevier; Computers and Eletronics in Agriculture; 88; 11-8-2012; 95-102 0168-1699 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53770 |
identifier_str_mv |
Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Sabattini, Rafael Alberto; et al.; Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach; Elsevier; Computers and Eletronics in Agriculture; 88; 11-8-2012; 95-102 0168-1699 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2012.07.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169912001901 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613348466884608 |
score |
13.070432 |