Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach

Autores
Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Sabattini, Rafael Alberto; López, Ricardo L.; Vigna, Mario Raul; Gigón, Ramón
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable precipitation regime. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their capacity to describe highly non-linear relationships among variables thus showing a high potential applicability in ecological systems. The objectives of the present work were to develop different ANN models for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear regression techniques. Classical hydrothermal-time indices were used as input variable for the development of univariate models, while thermal-time and hydro-time were used as independent input variables for developing bivariate models. The accumulated proportion of seedling emergence was the output variable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Obtained results indicate a higher accuracy and generalization performance of the optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields better prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% better in average than the best developed NLR model. These outcomes suggest the potential applicability of the proposed modeling approach in weed management decision support systems design.
Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sabattini, Rafael Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: López, Ricardo L.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Vigna, Mario Raul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina
Materia
Wild Oat
Hydorthermal Time
Semiarid Region
Emergence Prediction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53770

id CONICETDig_37e9af1f8507e7485dafc9458b39c770
oai_identifier_str oai:ri.conicet.gov.ar:11336/53770
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling Avena fatua seedling emergence dynamics: An artificial neural network approachChantre Balacca, Guillermo RubenBlanco, Anibal ManuelLodovichi, Mariela VictoriaBandoni, Jose AlbertoSabattini, Rafael AlbertoLópez, Ricardo L.Vigna, Mario RaulGigón, RamónWild OatHydorthermal TimeSemiarid RegionEmergence Predictionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable precipitation regime. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their capacity to describe highly non-linear relationships among variables thus showing a high potential applicability in ecological systems. The objectives of the present work were to develop different ANN models for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear regression techniques. Classical hydrothermal-time indices were used as input variable for the development of univariate models, while thermal-time and hydro-time were used as independent input variables for developing bivariate models. The accumulated proportion of seedling emergence was the output variable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Obtained results indicate a higher accuracy and generalization performance of the optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields better prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% better in average than the best developed NLR model. These outcomes suggest the potential applicability of the proposed modeling approach in weed management decision support systems design.Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sabattini, Rafael Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: López, Ricardo L.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Vigna, Mario Raul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; ArgentinaElsevier2012-08-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53770Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Sabattini, Rafael Alberto; et al.; Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach; Elsevier; Computers and Eletronics in Agriculture; 88; 11-8-2012; 95-1020168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2012.07.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169912001901info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:50Zoai:ri.conicet.gov.ar:11336/53770instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:50.368CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
title Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
spellingShingle Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
Chantre Balacca, Guillermo Ruben
Wild Oat
Hydorthermal Time
Semiarid Region
Emergence Prediction
title_short Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
title_full Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
title_fullStr Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
title_full_unstemmed Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
title_sort Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach
dc.creator.none.fl_str_mv Chantre Balacca, Guillermo Ruben
Blanco, Anibal Manuel
Lodovichi, Mariela Victoria
Bandoni, Jose Alberto
Sabattini, Rafael Alberto
López, Ricardo L.
Vigna, Mario Raul
Gigón, Ramón
author Chantre Balacca, Guillermo Ruben
author_facet Chantre Balacca, Guillermo Ruben
Blanco, Anibal Manuel
Lodovichi, Mariela Victoria
Bandoni, Jose Alberto
Sabattini, Rafael Alberto
López, Ricardo L.
Vigna, Mario Raul
Gigón, Ramón
author_role author
author2 Blanco, Anibal Manuel
Lodovichi, Mariela Victoria
Bandoni, Jose Alberto
Sabattini, Rafael Alberto
López, Ricardo L.
Vigna, Mario Raul
Gigón, Ramón
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Wild Oat
Hydorthermal Time
Semiarid Region
Emergence Prediction
topic Wild Oat
Hydorthermal Time
Semiarid Region
Emergence Prediction
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable precipitation regime. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their capacity to describe highly non-linear relationships among variables thus showing a high potential applicability in ecological systems. The objectives of the present work were to develop different ANN models for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear regression techniques. Classical hydrothermal-time indices were used as input variable for the development of univariate models, while thermal-time and hydro-time were used as independent input variables for developing bivariate models. The accumulated proportion of seedling emergence was the output variable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Obtained results indicate a higher accuracy and generalization performance of the optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields better prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% better in average than the best developed NLR model. These outcomes suggest the potential applicability of the proposed modeling approach in weed management decision support systems design.
Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sabattini, Rafael Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: López, Ricardo L.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Vigna, Mario Raul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Bordenave; Argentina
description Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable precipitation regime. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their capacity to describe highly non-linear relationships among variables thus showing a high potential applicability in ecological systems. The objectives of the present work were to develop different ANN models for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear regression techniques. Classical hydrothermal-time indices were used as input variable for the development of univariate models, while thermal-time and hydro-time were used as independent input variables for developing bivariate models. The accumulated proportion of seedling emergence was the output variable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Obtained results indicate a higher accuracy and generalization performance of the optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields better prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% better in average than the best developed NLR model. These outcomes suggest the potential applicability of the proposed modeling approach in weed management decision support systems design.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53770
Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Sabattini, Rafael Alberto; et al.; Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach; Elsevier; Computers and Eletronics in Agriculture; 88; 11-8-2012; 95-102
0168-1699
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53770
identifier_str_mv Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Sabattini, Rafael Alberto; et al.; Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach; Elsevier; Computers and Eletronics in Agriculture; 88; 11-8-2012; 95-102
0168-1699
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2012.07.005
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169912001901
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613348466884608
score 13.070432