A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence
- Autores
- Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Forcella, F.; Van Acker, R. C.; Sabbatini, Mario Ricardo; González Andújar, J. L.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Non-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the con- ventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential applicability of the proposed modelling approach in the design of weed management decision support systems.
Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina
Fil: Forcella, F.. United States Department Of Agriculture. Agricultural Research Service; Argentina
Fil: Van Acker, R. C.. University Of Guelph; Canadá
Fil: Sabbatini, Mario Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina
Fil: González Andújar, J. L.. Consejo Superior de Investigaciones Cientificas. Instituto de Agricultura Sostenible; España - Materia
-
Weed Emergence Models
Hydrothermal-Time
Hydro-Time
Thermal-Time
Weibull Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12718
Ver los metadatos del registro completo
id |
CONICETDig_fd61b8df519ebf2b7a27be0442e0218f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12718 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergenceChantre Balacca, Guillermo RubenBlanco, Anibal ManuelForcella, F.Van Acker, R. C.Sabbatini, Mario RicardoGonzález Andújar, J. L.Weed Emergence ModelsHydrothermal-TimeHydro-TimeThermal-TimeWeibull Modelhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Non-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the con- ventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential applicability of the proposed modelling approach in the design of weed management decision support systems.Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaFil: Forcella, F.. United States Department Of Agriculture. Agricultural Research Service; ArgentinaFil: Van Acker, R. C.. University Of Guelph; CanadáFil: Sabbatini, Mario Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); ArgentinaFil: González Andújar, J. L.. Consejo Superior de Investigaciones Cientificas. Instituto de Agricultura Sostenible; EspañaCambridge University Press2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12718Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Forcella, F.; Van Acker, R. C.; Sabbatini, Mario Ricardo; et al.; A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence; Cambridge University Press; Journal Of Agricultural Science; 152; 2; 1-2013; 254-2620021-8596enginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0021859612001098info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/div-classtitlea-comparative-study-between-non-linear-regression-and-artificial-neural-network-approaches-for-modelling-wild-oat-span-classitalicavena-fatuaspan-field-emergencediv/A3592A37A45503BEE582E8CFEFA78313info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:25Zoai:ri.conicet.gov.ar:11336/12718instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:26.016CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence |
title |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence |
spellingShingle |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence Chantre Balacca, Guillermo Ruben Weed Emergence Models Hydrothermal-Time Hydro-Time Thermal-Time Weibull Model |
title_short |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence |
title_full |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence |
title_fullStr |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence |
title_full_unstemmed |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence |
title_sort |
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence |
dc.creator.none.fl_str_mv |
Chantre Balacca, Guillermo Ruben Blanco, Anibal Manuel Forcella, F. Van Acker, R. C. Sabbatini, Mario Ricardo González Andújar, J. L. |
author |
Chantre Balacca, Guillermo Ruben |
author_facet |
Chantre Balacca, Guillermo Ruben Blanco, Anibal Manuel Forcella, F. Van Acker, R. C. Sabbatini, Mario Ricardo González Andújar, J. L. |
author_role |
author |
author2 |
Blanco, Anibal Manuel Forcella, F. Van Acker, R. C. Sabbatini, Mario Ricardo González Andújar, J. L. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Weed Emergence Models Hydrothermal-Time Hydro-Time Thermal-Time Weibull Model |
topic |
Weed Emergence Models Hydrothermal-Time Hydro-Time Thermal-Time Weibull Model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Non-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the con- ventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential applicability of the proposed modelling approach in the design of weed management decision support systems. Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina Fil: Forcella, F.. United States Department Of Agriculture. Agricultural Research Service; Argentina Fil: Van Acker, R. C.. University Of Guelph; Canadá Fil: Sabbatini, Mario Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina Fil: González Andújar, J. L.. Consejo Superior de Investigaciones Cientificas. Instituto de Agricultura Sostenible; España |
description |
Non-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the con- ventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential applicability of the proposed modelling approach in the design of weed management decision support systems. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12718 Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Forcella, F.; Van Acker, R. C.; Sabbatini, Mario Ricardo; et al.; A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence; Cambridge University Press; Journal Of Agricultural Science; 152; 2; 1-2013; 254-262 0021-8596 |
url |
http://hdl.handle.net/11336/12718 |
identifier_str_mv |
Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Forcella, F.; Van Acker, R. C.; Sabbatini, Mario Ricardo; et al.; A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence; Cambridge University Press; Journal Of Agricultural Science; 152; 2; 1-2013; 254-262 0021-8596 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0021859612001098 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/div-classtitlea-comparative-study-between-non-linear-regression-and-artificial-neural-network-approaches-for-modelling-wild-oat-span-classitalicavena-fatuaspan-field-emergencediv/A3592A37A45503BEE582E8CFEFA78313 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613695275008000 |
score |
13.070432 |