Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed

Autores
Ballari, Maria de Los Milagros; Filip Edelmannová, Miroslava; Ricka, Rudolf; Reli, Martin; Kocí, Kamila
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas–liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g · L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g · L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.
Fil: Ballari, Maria de Los Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Filip Edelmannová, Miroslava. Institute Of Environmental Technology; República Checa
Fil: Ricka, Rudolf. Institute Of Environmental Technology; República Checa
Fil: Reli, Martin. Institute Of Environmental Technology; República Checa
Fil: Kocí, Kamila. Institute Of Environmental Technology; República Checa
Materia
CO2 reduction
Photocatalysis
Mass transfer
Kinetic study
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/245908

id CONICETDig_376e62305adfccc33ade5777756e6aba
oai_identifier_str oai:ri.conicet.gov.ar:11336/245908
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speedBallari, Maria de Los MilagrosFilip Edelmannová, MiroslavaRicka, RudolfReli, MartinKocí, KamilaCO2 reductionPhotocatalysisMass transferKinetic studyhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas–liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g · L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g · L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.Fil: Ballari, Maria de Los Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Filip Edelmannová, Miroslava. Institute Of Environmental Technology; República ChecaFil: Ricka, Rudolf. Institute Of Environmental Technology; República ChecaFil: Reli, Martin. Institute Of Environmental Technology; República ChecaFil: Kocí, Kamila. Institute Of Environmental Technology; República ChecaElsevier2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245908Ballari, Maria de Los Milagros; Filip Edelmannová, Miroslava; Ricka, Rudolf; Reli, Martin; Kocí, Kamila; Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed; Elsevier; Energy Conversion and Management: X; 23; 100651; 6-2024; 1-102590-1745CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590174524001296info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecmx.2024.100651info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:39Zoai:ri.conicet.gov.ar:11336/245908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:39.529CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
title Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
spellingShingle Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
Ballari, Maria de Los Milagros
CO2 reduction
Photocatalysis
Mass transfer
Kinetic study
title_short Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
title_full Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
title_fullStr Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
title_full_unstemmed Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
title_sort Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
dc.creator.none.fl_str_mv Ballari, Maria de Los Milagros
Filip Edelmannová, Miroslava
Ricka, Rudolf
Reli, Martin
Kocí, Kamila
author Ballari, Maria de Los Milagros
author_facet Ballari, Maria de Los Milagros
Filip Edelmannová, Miroslava
Ricka, Rudolf
Reli, Martin
Kocí, Kamila
author_role author
author2 Filip Edelmannová, Miroslava
Ricka, Rudolf
Reli, Martin
Kocí, Kamila
author2_role author
author
author
author
dc.subject.none.fl_str_mv CO2 reduction
Photocatalysis
Mass transfer
Kinetic study
topic CO2 reduction
Photocatalysis
Mass transfer
Kinetic study
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas–liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g · L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g · L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.
Fil: Ballari, Maria de Los Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Filip Edelmannová, Miroslava. Institute Of Environmental Technology; República Checa
Fil: Ricka, Rudolf. Institute Of Environmental Technology; República Checa
Fil: Reli, Martin. Institute Of Environmental Technology; República Checa
Fil: Kocí, Kamila. Institute Of Environmental Technology; República Checa
description CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas–liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g · L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g · L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/245908
Ballari, Maria de Los Milagros; Filip Edelmannová, Miroslava; Ricka, Rudolf; Reli, Martin; Kocí, Kamila; Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed; Elsevier; Energy Conversion and Management: X; 23; 100651; 6-2024; 1-10
2590-1745
CONICET Digital
CONICET
url http://hdl.handle.net/11336/245908
identifier_str_mv Ballari, Maria de Los Milagros; Filip Edelmannová, Miroslava; Ricka, Rudolf; Reli, Martin; Kocí, Kamila; Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed; Elsevier; Energy Conversion and Management: X; 23; 100651; 6-2024; 1-10
2590-1745
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590174524001296
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecmx.2024.100651
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614327546413056
score 13.070432