Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions

Autores
Giusti, Sebastian Miguel; Novotny, Antonio A.; De Souza Neto, Eduardo Alberto
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper proposes an exact analytical formula for the topological sensitivity of the macroscopic response of elastic microstructures to the insertion of circular inclusions. The macroscopic response is assumed to be predicted by a well-established multi-scale constitutive theory where the macroscopic strain and stress tensors are defined as volume averages of their microscopic counterpart fields over a representative volume element (RVE) of material. The proposed formula-a symmetric fourth-order tensor field over the RVE domain-is a topological derivative which measures how the macroscopic elasticity tensor changes when an infinitesimal circular elastic inclusion is introduced within the RVE. In the limits, when the inclusion/matrix phase contrast ratio tends to zero and infinity, the sensitivities to the insertion of a hole and a rigid inclusion, respectively, are rigorously obtained. The derivation relies on the topological asymptotic analysis of the predicted macroscopic elasticity and is presented in detail. The derived fundamental formula is of interest to many areas of applied and computational mechanics. To illustrate its potential applicability, a simple finite element-based example is presented where the topological derivative information is used to automatically generate a bi-material microstructure to meet pre-specified macroscopic properties.
Fil: Giusti, Sebastian Miguel. Laboratorio Nacional de Computación Científica; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Novotny, Antonio A.. Laboratorio Nacional de Computación Científica; Brasil
Fil: De Souza Neto, Eduardo Alberto. Swansea University; Reino Unido
Materia
MULTI-SCALE MODELLING
SENSITIVITY ANALYSIS
SYNTHESIS OF MICROSTRUCTURES
TOPOLOGICAL DERIVATIVE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/131349

id CONICETDig_376363835ff00a6bf997a7ed12c3d03e
oai_identifier_str oai:ri.conicet.gov.ar:11336/131349
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusionsGiusti, Sebastian MiguelNovotny, Antonio A.De Souza Neto, Eduardo AlbertoMULTI-SCALE MODELLINGSENSITIVITY ANALYSISSYNTHESIS OF MICROSTRUCTURESTOPOLOGICAL DERIVATIVEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This paper proposes an exact analytical formula for the topological sensitivity of the macroscopic response of elastic microstructures to the insertion of circular inclusions. The macroscopic response is assumed to be predicted by a well-established multi-scale constitutive theory where the macroscopic strain and stress tensors are defined as volume averages of their microscopic counterpart fields over a representative volume element (RVE) of material. The proposed formula-a symmetric fourth-order tensor field over the RVE domain-is a topological derivative which measures how the macroscopic elasticity tensor changes when an infinitesimal circular elastic inclusion is introduced within the RVE. In the limits, when the inclusion/matrix phase contrast ratio tends to zero and infinity, the sensitivities to the insertion of a hole and a rigid inclusion, respectively, are rigorously obtained. The derivation relies on the topological asymptotic analysis of the predicted macroscopic elasticity and is presented in detail. The derived fundamental formula is of interest to many areas of applied and computational mechanics. To illustrate its potential applicability, a simple finite element-based example is presented where the topological derivative information is used to automatically generate a bi-material microstructure to meet pre-specified macroscopic properties.Fil: Giusti, Sebastian Miguel. Laboratorio Nacional de Computación Científica; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Novotny, Antonio A.. Laboratorio Nacional de Computación Científica; BrasilFil: De Souza Neto, Eduardo Alberto. Swansea University; Reino UnidoThe Royal Society2010-06-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/131349Giusti, Sebastian Miguel; Novotny, Antonio A.; De Souza Neto, Eduardo Alberto; Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions; The Royal Society; Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences; 466; 2118; 8-6-2010; 1703-17231364-50211471-2946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1098/rspa.2009.0499info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rspa.2009.0499info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:31Zoai:ri.conicet.gov.ar:11336/131349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:31.414CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
title Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
spellingShingle Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
Giusti, Sebastian Miguel
MULTI-SCALE MODELLING
SENSITIVITY ANALYSIS
SYNTHESIS OF MICROSTRUCTURES
TOPOLOGICAL DERIVATIVE
title_short Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
title_full Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
title_fullStr Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
title_full_unstemmed Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
title_sort Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions
dc.creator.none.fl_str_mv Giusti, Sebastian Miguel
Novotny, Antonio A.
De Souza Neto, Eduardo Alberto
author Giusti, Sebastian Miguel
author_facet Giusti, Sebastian Miguel
Novotny, Antonio A.
De Souza Neto, Eduardo Alberto
author_role author
author2 Novotny, Antonio A.
De Souza Neto, Eduardo Alberto
author2_role author
author
dc.subject.none.fl_str_mv MULTI-SCALE MODELLING
SENSITIVITY ANALYSIS
SYNTHESIS OF MICROSTRUCTURES
TOPOLOGICAL DERIVATIVE
topic MULTI-SCALE MODELLING
SENSITIVITY ANALYSIS
SYNTHESIS OF MICROSTRUCTURES
TOPOLOGICAL DERIVATIVE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper proposes an exact analytical formula for the topological sensitivity of the macroscopic response of elastic microstructures to the insertion of circular inclusions. The macroscopic response is assumed to be predicted by a well-established multi-scale constitutive theory where the macroscopic strain and stress tensors are defined as volume averages of their microscopic counterpart fields over a representative volume element (RVE) of material. The proposed formula-a symmetric fourth-order tensor field over the RVE domain-is a topological derivative which measures how the macroscopic elasticity tensor changes when an infinitesimal circular elastic inclusion is introduced within the RVE. In the limits, when the inclusion/matrix phase contrast ratio tends to zero and infinity, the sensitivities to the insertion of a hole and a rigid inclusion, respectively, are rigorously obtained. The derivation relies on the topological asymptotic analysis of the predicted macroscopic elasticity and is presented in detail. The derived fundamental formula is of interest to many areas of applied and computational mechanics. To illustrate its potential applicability, a simple finite element-based example is presented where the topological derivative information is used to automatically generate a bi-material microstructure to meet pre-specified macroscopic properties.
Fil: Giusti, Sebastian Miguel. Laboratorio Nacional de Computación Científica; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Novotny, Antonio A.. Laboratorio Nacional de Computación Científica; Brasil
Fil: De Souza Neto, Eduardo Alberto. Swansea University; Reino Unido
description This paper proposes an exact analytical formula for the topological sensitivity of the macroscopic response of elastic microstructures to the insertion of circular inclusions. The macroscopic response is assumed to be predicted by a well-established multi-scale constitutive theory where the macroscopic strain and stress tensors are defined as volume averages of their microscopic counterpart fields over a representative volume element (RVE) of material. The proposed formula-a symmetric fourth-order tensor field over the RVE domain-is a topological derivative which measures how the macroscopic elasticity tensor changes when an infinitesimal circular elastic inclusion is introduced within the RVE. In the limits, when the inclusion/matrix phase contrast ratio tends to zero and infinity, the sensitivities to the insertion of a hole and a rigid inclusion, respectively, are rigorously obtained. The derivation relies on the topological asymptotic analysis of the predicted macroscopic elasticity and is presented in detail. The derived fundamental formula is of interest to many areas of applied and computational mechanics. To illustrate its potential applicability, a simple finite element-based example is presented where the topological derivative information is used to automatically generate a bi-material microstructure to meet pre-specified macroscopic properties.
publishDate 2010
dc.date.none.fl_str_mv 2010-06-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/131349
Giusti, Sebastian Miguel; Novotny, Antonio A.; De Souza Neto, Eduardo Alberto; Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions; The Royal Society; Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences; 466; 2118; 8-6-2010; 1703-1723
1364-5021
1471-2946
CONICET Digital
CONICET
url http://hdl.handle.net/11336/131349
identifier_str_mv Giusti, Sebastian Miguel; Novotny, Antonio A.; De Souza Neto, Eduardo Alberto; Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions; The Royal Society; Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences; 466; 2118; 8-6-2010; 1703-1723
1364-5021
1471-2946
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1098/rspa.2009.0499
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rspa.2009.0499
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv The Royal Society
publisher.none.fl_str_mv The Royal Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613975389503488
score 13.070432