Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
- Autores
- Giusti, Sebastian Miguel; Novotny, A. A.; Muñoz Rivera, J. E.; Esparta Rodriguez, J. E.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equations. In addition, the topological asymptotic analysis associated to multi-physics problems has been reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical domains. In this work, we present the topological derivative in its closed form for the total potential mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical justification for the derived formulas and develop precise estimates for the remainders of the topological asymptotic expansion.
Fil: Giusti, Sebastian Miguel. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Novotny, A. A.. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Muñoz Rivera, J. E.. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Esparta Rodriguez, J. E.. Laboratorio Nacional de Computacao Cientifica; Brasil - Materia
-
Topological Derivative
Thermo-Mechanical Semi-Coupled System
Multi-Physic Topology Optimization
Asymptotic Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22514
Ver los metadatos del registro completo
id |
CONICETDig_24c66a65e062e5f5e0297caad38e4f17 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22514 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled systemGiusti, Sebastian MiguelNovotny, A. A.Muñoz Rivera, J. E.Esparta Rodriguez, J. E.Topological DerivativeThermo-Mechanical Semi-Coupled SystemMulti-Physic Topology OptimizationAsymptotic Analysishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equations. In addition, the topological asymptotic analysis associated to multi-physics problems has been reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical domains. In this work, we present the topological derivative in its closed form for the total potential mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical justification for the derived formulas and develop precise estimates for the remainders of the topological asymptotic expansion.Fil: Giusti, Sebastian Miguel. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Novotny, A. A.. Laboratorio Nacional de Computacao Cientifica; BrasilFil: Muñoz Rivera, J. E.. Laboratorio Nacional de Computacao Cientifica; BrasilFil: Esparta Rodriguez, J. E.. Laboratorio Nacional de Computacao Cientifica; BrasilElsevier2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22514Giusti, Sebastian Miguel; Novotny, A. A.; Muñoz Rivera, J. E.; Esparta Rodriguez, J. E.; Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system; Elsevier; International Journal Of Solids And Structures; 50; 9; 1-2013; 1303-13130020-7683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2012.12.022info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020768313000073info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:24Zoai:ri.conicet.gov.ar:11336/22514instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:25.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system |
title |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system |
spellingShingle |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system Giusti, Sebastian Miguel Topological Derivative Thermo-Mechanical Semi-Coupled System Multi-Physic Topology Optimization Asymptotic Analysis |
title_short |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system |
title_full |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system |
title_fullStr |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system |
title_full_unstemmed |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system |
title_sort |
Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system |
dc.creator.none.fl_str_mv |
Giusti, Sebastian Miguel Novotny, A. A. Muñoz Rivera, J. E. Esparta Rodriguez, J. E. |
author |
Giusti, Sebastian Miguel |
author_facet |
Giusti, Sebastian Miguel Novotny, A. A. Muñoz Rivera, J. E. Esparta Rodriguez, J. E. |
author_role |
author |
author2 |
Novotny, A. A. Muñoz Rivera, J. E. Esparta Rodriguez, J. E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Topological Derivative Thermo-Mechanical Semi-Coupled System Multi-Physic Topology Optimization Asymptotic Analysis |
topic |
Topological Derivative Thermo-Mechanical Semi-Coupled System Multi-Physic Topology Optimization Asymptotic Analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equations. In addition, the topological asymptotic analysis associated to multi-physics problems has been reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical domains. In this work, we present the topological derivative in its closed form for the total potential mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical justification for the derived formulas and develop precise estimates for the remainders of the topological asymptotic expansion. Fil: Giusti, Sebastian Miguel. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Novotny, A. A.. Laboratorio Nacional de Computacao Cientifica; Brasil Fil: Muñoz Rivera, J. E.. Laboratorio Nacional de Computacao Cientifica; Brasil Fil: Esparta Rodriguez, J. E.. Laboratorio Nacional de Computacao Cientifica; Brasil |
description |
The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equations. In addition, the topological asymptotic analysis associated to multi-physics problems has been reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical domains. In this work, we present the topological derivative in its closed form for the total potential mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical justification for the derived formulas and develop precise estimates for the remainders of the topological asymptotic expansion. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22514 Giusti, Sebastian Miguel; Novotny, A. A.; Muñoz Rivera, J. E.; Esparta Rodriguez, J. E.; Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system; Elsevier; International Journal Of Solids And Structures; 50; 9; 1-2013; 1303-1313 0020-7683 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22514 |
identifier_str_mv |
Giusti, Sebastian Miguel; Novotny, A. A.; Muñoz Rivera, J. E.; Esparta Rodriguez, J. E.; Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system; Elsevier; International Journal Of Solids And Structures; 50; 9; 1-2013; 1303-1313 0020-7683 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2012.12.022 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020768313000073 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614051010707456 |
score |
13.070432 |