Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system

Autores
Giusti, Sebastian Miguel; Novotny, A. A.; Muñoz Rivera, J. E.; Esparta Rodriguez, J. E.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equations. In addition, the topological asymptotic analysis associated to multi-physics problems has been reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical domains. In this work, we present the topological derivative in its closed form for the total potential mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical justification for the derived formulas and develop precise estimates for the remainders of the topological asymptotic expansion.
Fil: Giusti, Sebastian Miguel. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Novotny, A. A.. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Muñoz Rivera, J. E.. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Esparta Rodriguez, J. E.. Laboratorio Nacional de Computacao Cientifica; Brasil
Materia
Topological Derivative
Thermo-Mechanical Semi-Coupled System
Multi-Physic Topology Optimization
Asymptotic Analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22514

id CONICETDig_24c66a65e062e5f5e0297caad38e4f17
oai_identifier_str oai:ri.conicet.gov.ar:11336/22514
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled systemGiusti, Sebastian MiguelNovotny, A. A.Muñoz Rivera, J. E.Esparta Rodriguez, J. E.Topological DerivativeThermo-Mechanical Semi-Coupled SystemMulti-Physic Topology OptimizationAsymptotic Analysishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equations. In addition, the topological asymptotic analysis associated to multi-physics problems has been reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical domains. In this work, we present the topological derivative in its closed form for the total potential mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical justification for the derived formulas and develop precise estimates for the remainders of the topological asymptotic expansion.Fil: Giusti, Sebastian Miguel. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Novotny, A. A.. Laboratorio Nacional de Computacao Cientifica; BrasilFil: Muñoz Rivera, J. E.. Laboratorio Nacional de Computacao Cientifica; BrasilFil: Esparta Rodriguez, J. E.. Laboratorio Nacional de Computacao Cientifica; BrasilElsevier2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22514Giusti, Sebastian Miguel; Novotny, A. A.; Muñoz Rivera, J. E.; Esparta Rodriguez, J. E.; Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system; Elsevier; International Journal Of Solids And Structures; 50; 9; 1-2013; 1303-13130020-7683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2012.12.022info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020768313000073info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:24Zoai:ri.conicet.gov.ar:11336/22514instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:25.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
title Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
spellingShingle Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
Giusti, Sebastian Miguel
Topological Derivative
Thermo-Mechanical Semi-Coupled System
Multi-Physic Topology Optimization
Asymptotic Analysis
title_short Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
title_full Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
title_fullStr Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
title_full_unstemmed Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
title_sort Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
dc.creator.none.fl_str_mv Giusti, Sebastian Miguel
Novotny, A. A.
Muñoz Rivera, J. E.
Esparta Rodriguez, J. E.
author Giusti, Sebastian Miguel
author_facet Giusti, Sebastian Miguel
Novotny, A. A.
Muñoz Rivera, J. E.
Esparta Rodriguez, J. E.
author_role author
author2 Novotny, A. A.
Muñoz Rivera, J. E.
Esparta Rodriguez, J. E.
author2_role author
author
author
dc.subject.none.fl_str_mv Topological Derivative
Thermo-Mechanical Semi-Coupled System
Multi-Physic Topology Optimization
Asymptotic Analysis
topic Topological Derivative
Thermo-Mechanical Semi-Coupled System
Multi-Physic Topology Optimization
Asymptotic Analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equations. In addition, the topological asymptotic analysis associated to multi-physics problems has been reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical domains. In this work, we present the topological derivative in its closed form for the total potential mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical justification for the derived formulas and develop precise estimates for the remainders of the topological asymptotic expansion.
Fil: Giusti, Sebastian Miguel. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Novotny, A. A.. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Muñoz Rivera, J. E.. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Esparta Rodriguez, J. E.. Laboratorio Nacional de Computacao Cientifica; Brasil
description The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equations. In addition, the topological asymptotic analysis associated to multi-physics problems has been reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical domains. In this work, we present the topological derivative in its closed form for the total potential mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical justification for the derived formulas and develop precise estimates for the remainders of the topological asymptotic expansion.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22514
Giusti, Sebastian Miguel; Novotny, A. A.; Muñoz Rivera, J. E.; Esparta Rodriguez, J. E.; Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system; Elsevier; International Journal Of Solids And Structures; 50; 9; 1-2013; 1303-1313
0020-7683
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22514
identifier_str_mv Giusti, Sebastian Miguel; Novotny, A. A.; Muñoz Rivera, J. E.; Esparta Rodriguez, J. E.; Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system; Elsevier; International Journal Of Solids And Structures; 50; 9; 1-2013; 1303-1313
0020-7683
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2012.12.022
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020768313000073
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614051010707456
score 13.070432