Topology optimization of 2D elastic structures using boundary elements
- Autores
- Carretero Neches, L.; Cisilino, Adrian Pablo
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss. A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards, material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate. The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting "holes" at those positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is satisfied. The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available in the literature. © 2007 Elsevier Ltd. All rights reserved.
Fil: Carretero Neches, L.. Universidad de Sevilla; España
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
Boundary Elements
Elastostatics
Topological Derivative
Topology Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67923
Ver los metadatos del registro completo
id |
CONICETDig_e6afb2371ab167961794370e5b1bd929 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67923 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Topology optimization of 2D elastic structures using boundary elementsCarretero Neches, L.Cisilino, Adrian PabloBoundary ElementsElastostaticsTopological DerivativeTopology Optimizationhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss. A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards, material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate. The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting "holes" at those positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is satisfied. The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available in the literature. © 2007 Elsevier Ltd. All rights reserved.Fil: Carretero Neches, L.. Universidad de Sevilla; EspañaFil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaElsevier2008-07-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67923Carretero Neches, L.; Cisilino, Adrian Pablo; Topology optimization of 2D elastic structures using boundary elements; Elsevier; Engineering Analysis With Boundary Elements; 32; 7; 3-7-2008; 533-5440955-7997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.enganabound.2007.10.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0955799707001634info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:41Zoai:ri.conicet.gov.ar:11336/67923instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:42.059CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Topology optimization of 2D elastic structures using boundary elements |
title |
Topology optimization of 2D elastic structures using boundary elements |
spellingShingle |
Topology optimization of 2D elastic structures using boundary elements Carretero Neches, L. Boundary Elements Elastostatics Topological Derivative Topology Optimization |
title_short |
Topology optimization of 2D elastic structures using boundary elements |
title_full |
Topology optimization of 2D elastic structures using boundary elements |
title_fullStr |
Topology optimization of 2D elastic structures using boundary elements |
title_full_unstemmed |
Topology optimization of 2D elastic structures using boundary elements |
title_sort |
Topology optimization of 2D elastic structures using boundary elements |
dc.creator.none.fl_str_mv |
Carretero Neches, L. Cisilino, Adrian Pablo |
author |
Carretero Neches, L. |
author_facet |
Carretero Neches, L. Cisilino, Adrian Pablo |
author_role |
author |
author2 |
Cisilino, Adrian Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Boundary Elements Elastostatics Topological Derivative Topology Optimization |
topic |
Boundary Elements Elastostatics Topological Derivative Topology Optimization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss. A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards, material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate. The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting "holes" at those positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is satisfied. The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available in the literature. © 2007 Elsevier Ltd. All rights reserved. Fil: Carretero Neches, L.. Universidad de Sevilla; España Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss. A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards, material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate. The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting "holes" at those positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is satisfied. The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available in the literature. © 2007 Elsevier Ltd. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-07-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67923 Carretero Neches, L.; Cisilino, Adrian Pablo; Topology optimization of 2D elastic structures using boundary elements; Elsevier; Engineering Analysis With Boundary Elements; 32; 7; 3-7-2008; 533-544 0955-7997 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67923 |
identifier_str_mv |
Carretero Neches, L.; Cisilino, Adrian Pablo; Topology optimization of 2D elastic structures using boundary elements; Elsevier; Engineering Analysis With Boundary Elements; 32; 7; 3-7-2008; 533-544 0955-7997 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.enganabound.2007.10.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0955799707001634 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613457497817088 |
score |
13.070432 |