Topology optimization of 2D elastic structures using boundary elements

Autores
Carretero Neches, L.; Cisilino, Adrian Pablo
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss. A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards, material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate. The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting "holes" at those positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is satisfied. The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available in the literature. © 2007 Elsevier Ltd. All rights reserved.
Fil: Carretero Neches, L.. Universidad de Sevilla; España
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Materia
Boundary Elements
Elastostatics
Topological Derivative
Topology Optimization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67923

id CONICETDig_e6afb2371ab167961794370e5b1bd929
oai_identifier_str oai:ri.conicet.gov.ar:11336/67923
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Topology optimization of 2D elastic structures using boundary elementsCarretero Neches, L.Cisilino, Adrian PabloBoundary ElementsElastostaticsTopological DerivativeTopology Optimizationhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss. A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards, material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate. The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting "holes" at those positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is satisfied. The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available in the literature. © 2007 Elsevier Ltd. All rights reserved.Fil: Carretero Neches, L.. Universidad de Sevilla; EspañaFil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaElsevier2008-07-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67923Carretero Neches, L.; Cisilino, Adrian Pablo; Topology optimization of 2D elastic structures using boundary elements; Elsevier; Engineering Analysis With Boundary Elements; 32; 7; 3-7-2008; 533-5440955-7997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.enganabound.2007.10.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0955799707001634info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:41Zoai:ri.conicet.gov.ar:11336/67923instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:42.059CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Topology optimization of 2D elastic structures using boundary elements
title Topology optimization of 2D elastic structures using boundary elements
spellingShingle Topology optimization of 2D elastic structures using boundary elements
Carretero Neches, L.
Boundary Elements
Elastostatics
Topological Derivative
Topology Optimization
title_short Topology optimization of 2D elastic structures using boundary elements
title_full Topology optimization of 2D elastic structures using boundary elements
title_fullStr Topology optimization of 2D elastic structures using boundary elements
title_full_unstemmed Topology optimization of 2D elastic structures using boundary elements
title_sort Topology optimization of 2D elastic structures using boundary elements
dc.creator.none.fl_str_mv Carretero Neches, L.
Cisilino, Adrian Pablo
author Carretero Neches, L.
author_facet Carretero Neches, L.
Cisilino, Adrian Pablo
author_role author
author2 Cisilino, Adrian Pablo
author2_role author
dc.subject.none.fl_str_mv Boundary Elements
Elastostatics
Topological Derivative
Topology Optimization
topic Boundary Elements
Elastostatics
Topological Derivative
Topology Optimization
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss. A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards, material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate. The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting "holes" at those positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is satisfied. The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available in the literature. © 2007 Elsevier Ltd. All rights reserved.
Fil: Carretero Neches, L.. Universidad de Sevilla; España
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
description Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss. A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards, material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate. The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting "holes" at those positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is satisfied. The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available in the literature. © 2007 Elsevier Ltd. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008-07-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67923
Carretero Neches, L.; Cisilino, Adrian Pablo; Topology optimization of 2D elastic structures using boundary elements; Elsevier; Engineering Analysis With Boundary Elements; 32; 7; 3-7-2008; 533-544
0955-7997
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67923
identifier_str_mv Carretero Neches, L.; Cisilino, Adrian Pablo; Topology optimization of 2D elastic structures using boundary elements; Elsevier; Engineering Analysis With Boundary Elements; 32; 7; 3-7-2008; 533-544
0955-7997
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.enganabound.2007.10.003
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0955799707001634
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613457497817088
score 13.070432