Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes

Autores
Sarasua, Antonio Ernesto; Molina, Marcelo Gustavo; Mercado, Pedro Enrique
Año de publicación
2013
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hoy en día, además de la tendencia a utilizar fuentes renovables de energía, existe también una tendencia a operar estas unidades en una forma descentralizada de modo que sean capaces, si es necesario, de trabajar independientemente o en forma aislada del resto del sistema de potencia. Estos sistemas se denominan microredes (MGs). Cuando se utilizan fuentes de energías renovables, basadas principalmente en la radiación solar o el viento, el problema que normalmente se enfrenta son las fluctuaciones y la naturaleza intermitente de estos recursos. En el caso de las MGs este problema es particularmente crítico dada la capacidad que deben tener de trabajar en forma aislada. Para operar con seguridad la MG normalmente se utiliza una combinación de varios tipos de generadores y también se hace uso de almacenamiento de energía para mantener el equilibrio de la potencia activa. Entre los nuevos sistemas de almacenamiento, las baterías de sodio-sulfuro (NAS) se consideran adecuadas para llevar a cabo diversas tareas de seguridad en las MGs. Las baterías del tipo NAS tienen son capaces de almacenar gran cantidad de energía y densidad de potencia por unidad de volumen y también pueden proporcionar energía tanto en el corto como en el largo alcance. Sin embargo, el inconveniente que estas baterías tienen es que hay pocos modelos que representan fielmente su comportamiento dinámico. Para un estudio adecuado de la seguridad de MGs usando baterías tipo NAS, es necesario identificar el comportamiento dinámico de estas baterías con un modelo preciso. Este artículo presenta el modelado detallado y simulación dinámica de un dispositivo de almacenamiento tipo NAS para su uso en microredes. También se describe el sistema de acondicionamiento de potencia (DSTATCOM) que se utiliza para conectar la batería NAS con la MG y la estrategia de control. Por último, el modelo de la batería NAS se implementa en el entorno de MATLAB / Simulink, poniéndolo a prueba en una microred.
Nowadays, in addition to a tendency to the use of renewable energy sources, there is also the tendency to operate these units in a decentralized manner so that they are able, if necessary, to work independently or in isolation from the rest of the power system. These systems are called microgrids (MGs). When using renewable energy sources, mainly based on solar radiation or wind, the problem is mainly the fluctuating and intermittent nature of these resources. In the case of MGs, this problem is particularly critical given the need of the ability to work in isolation. To operate MGs safely, a combination of several types of generators and also energy storage should be used to maintain the balance of active power. Among the new storage systems, sodium sulphur batteries (NAS) are considered suitable to perform various security tasks in MG. NAS batteries have a high energy and power density per unit volume and they can also provide energy in both the short and long range. However, the disadvantage of these batteries is that there are few models that genuinely represent their dynamic behavior. For a proper study of the security of MGs using NAS battery, it is necessary to identify their dynamic performance with an accurate model. This paper presents the detailed modeling and dynamic simulation of a NAS battery storage for use in MGs. It also describes the power conditioning system (DSTATCOM) used to connect the NAS battery with the MG and the control strategy. Finally, a NAS battery model was implemented in the environment of MATLAB/Simulink, and then tested in a microgrid system.
Fil: Sarasua, Antonio Ernesto. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Molina, Marcelo Gustavo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mercado, Pedro Enrique. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Baterías de Sodio Sulfuro
Microredes
Modelación Detallada
Sistemas de Acondicionamiento de Potencia
Técnicas de Control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23857

id CONICETDig_373e51f9aff86ecd8d99304233e4caa6
oai_identifier_str oai:ri.conicet.gov.ar:11336/23857
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modelo dinámico de batería de sodio sulfuro para su aplicación en microredesDynamic model of sodium sulphur battery for application in microgridsSarasua, Antonio ErnestoMolina, Marcelo GustavoMercado, Pedro EnriqueBaterías de Sodio SulfuroMicroredesModelación DetalladaSistemas de Acondicionamiento de PotenciaTécnicas de Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Hoy en día, además de la tendencia a utilizar fuentes renovables de energía, existe también una tendencia a operar estas unidades en una forma descentralizada de modo que sean capaces, si es necesario, de trabajar independientemente o en forma aislada del resto del sistema de potencia. Estos sistemas se denominan microredes (MGs). Cuando se utilizan fuentes de energías renovables, basadas principalmente en la radiación solar o el viento, el problema que normalmente se enfrenta son las fluctuaciones y la naturaleza intermitente de estos recursos. En el caso de las MGs este problema es particularmente crítico dada la capacidad que deben tener de trabajar en forma aislada. Para operar con seguridad la MG normalmente se utiliza una combinación de varios tipos de generadores y también se hace uso de almacenamiento de energía para mantener el equilibrio de la potencia activa. Entre los nuevos sistemas de almacenamiento, las baterías de sodio-sulfuro (NAS) se consideran adecuadas para llevar a cabo diversas tareas de seguridad en las MGs. Las baterías del tipo NAS tienen son capaces de almacenar gran cantidad de energía y densidad de potencia por unidad de volumen y también pueden proporcionar energía tanto en el corto como en el largo alcance. Sin embargo, el inconveniente que estas baterías tienen es que hay pocos modelos que representan fielmente su comportamiento dinámico. Para un estudio adecuado de la seguridad de MGs usando baterías tipo NAS, es necesario identificar el comportamiento dinámico de estas baterías con un modelo preciso. Este artículo presenta el modelado detallado y simulación dinámica de un dispositivo de almacenamiento tipo NAS para su uso en microredes. También se describe el sistema de acondicionamiento de potencia (DSTATCOM) que se utiliza para conectar la batería NAS con la MG y la estrategia de control. Por último, el modelo de la batería NAS se implementa en el entorno de MATLAB / Simulink, poniéndolo a prueba en una microred.Nowadays, in addition to a tendency to the use of renewable energy sources, there is also the tendency to operate these units in a decentralized manner so that they are able, if necessary, to work independently or in isolation from the rest of the power system. These systems are called microgrids (MGs). When using renewable energy sources, mainly based on solar radiation or wind, the problem is mainly the fluctuating and intermittent nature of these resources. In the case of MGs, this problem is particularly critical given the need of the ability to work in isolation. To operate MGs safely, a combination of several types of generators and also energy storage should be used to maintain the balance of active power. Among the new storage systems, sodium sulphur batteries (NAS) are considered suitable to perform various security tasks in MG. NAS batteries have a high energy and power density per unit volume and they can also provide energy in both the short and long range. However, the disadvantage of these batteries is that there are few models that genuinely represent their dynamic behavior. For a proper study of the security of MGs using NAS battery, it is necessary to identify their dynamic performance with an accurate model. This paper presents the detailed modeling and dynamic simulation of a NAS battery storage for use in MGs. It also describes the power conditioning system (DSTATCOM) used to connect the NAS battery with the MG and the control strategy. Finally, a NAS battery model was implemented in the environment of MATLAB/Simulink, and then tested in a microgrid system.Fil: Sarasua, Antonio Ernesto. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Molina, Marcelo Gustavo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mercado, Pedro Enrique. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUniversidad Nacional de Misiones. Facultad de Ciencias Exactas, Quí­micas y Naturales. Centro de Investigación y Desarrollo Tecnológico2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23857Sarasua, Antonio Ernesto; Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes; Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Quí­micas y Naturales. Centro de Investigación y Desarrollo Tecnológico; Revista de Ciencia y Tecnología; 15; 20; 12-2013; 5-100329-89221851-7587CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/137info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/4w3v8yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:22:05Zoai:ri.conicet.gov.ar:11336/23857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:22:05.732CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes
Dynamic model of sodium sulphur battery for application in microgrids
title Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes
spellingShingle Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes
Sarasua, Antonio Ernesto
Baterías de Sodio Sulfuro
Microredes
Modelación Detallada
Sistemas de Acondicionamiento de Potencia
Técnicas de Control
title_short Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes
title_full Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes
title_fullStr Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes
title_full_unstemmed Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes
title_sort Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes
dc.creator.none.fl_str_mv Sarasua, Antonio Ernesto
Molina, Marcelo Gustavo
Mercado, Pedro Enrique
author Sarasua, Antonio Ernesto
author_facet Sarasua, Antonio Ernesto
Molina, Marcelo Gustavo
Mercado, Pedro Enrique
author_role author
author2 Molina, Marcelo Gustavo
Mercado, Pedro Enrique
author2_role author
author
dc.subject.none.fl_str_mv Baterías de Sodio Sulfuro
Microredes
Modelación Detallada
Sistemas de Acondicionamiento de Potencia
Técnicas de Control
topic Baterías de Sodio Sulfuro
Microredes
Modelación Detallada
Sistemas de Acondicionamiento de Potencia
Técnicas de Control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Hoy en día, además de la tendencia a utilizar fuentes renovables de energía, existe también una tendencia a operar estas unidades en una forma descentralizada de modo que sean capaces, si es necesario, de trabajar independientemente o en forma aislada del resto del sistema de potencia. Estos sistemas se denominan microredes (MGs). Cuando se utilizan fuentes de energías renovables, basadas principalmente en la radiación solar o el viento, el problema que normalmente se enfrenta son las fluctuaciones y la naturaleza intermitente de estos recursos. En el caso de las MGs este problema es particularmente crítico dada la capacidad que deben tener de trabajar en forma aislada. Para operar con seguridad la MG normalmente se utiliza una combinación de varios tipos de generadores y también se hace uso de almacenamiento de energía para mantener el equilibrio de la potencia activa. Entre los nuevos sistemas de almacenamiento, las baterías de sodio-sulfuro (NAS) se consideran adecuadas para llevar a cabo diversas tareas de seguridad en las MGs. Las baterías del tipo NAS tienen son capaces de almacenar gran cantidad de energía y densidad de potencia por unidad de volumen y también pueden proporcionar energía tanto en el corto como en el largo alcance. Sin embargo, el inconveniente que estas baterías tienen es que hay pocos modelos que representan fielmente su comportamiento dinámico. Para un estudio adecuado de la seguridad de MGs usando baterías tipo NAS, es necesario identificar el comportamiento dinámico de estas baterías con un modelo preciso. Este artículo presenta el modelado detallado y simulación dinámica de un dispositivo de almacenamiento tipo NAS para su uso en microredes. También se describe el sistema de acondicionamiento de potencia (DSTATCOM) que se utiliza para conectar la batería NAS con la MG y la estrategia de control. Por último, el modelo de la batería NAS se implementa en el entorno de MATLAB / Simulink, poniéndolo a prueba en una microred.
Nowadays, in addition to a tendency to the use of renewable energy sources, there is also the tendency to operate these units in a decentralized manner so that they are able, if necessary, to work independently or in isolation from the rest of the power system. These systems are called microgrids (MGs). When using renewable energy sources, mainly based on solar radiation or wind, the problem is mainly the fluctuating and intermittent nature of these resources. In the case of MGs, this problem is particularly critical given the need of the ability to work in isolation. To operate MGs safely, a combination of several types of generators and also energy storage should be used to maintain the balance of active power. Among the new storage systems, sodium sulphur batteries (NAS) are considered suitable to perform various security tasks in MG. NAS batteries have a high energy and power density per unit volume and they can also provide energy in both the short and long range. However, the disadvantage of these batteries is that there are few models that genuinely represent their dynamic behavior. For a proper study of the security of MGs using NAS battery, it is necessary to identify their dynamic performance with an accurate model. This paper presents the detailed modeling and dynamic simulation of a NAS battery storage for use in MGs. It also describes the power conditioning system (DSTATCOM) used to connect the NAS battery with the MG and the control strategy. Finally, a NAS battery model was implemented in the environment of MATLAB/Simulink, and then tested in a microgrid system.
Fil: Sarasua, Antonio Ernesto. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Molina, Marcelo Gustavo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mercado, Pedro Enrique. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Hoy en día, además de la tendencia a utilizar fuentes renovables de energía, existe también una tendencia a operar estas unidades en una forma descentralizada de modo que sean capaces, si es necesario, de trabajar independientemente o en forma aislada del resto del sistema de potencia. Estos sistemas se denominan microredes (MGs). Cuando se utilizan fuentes de energías renovables, basadas principalmente en la radiación solar o el viento, el problema que normalmente se enfrenta son las fluctuaciones y la naturaleza intermitente de estos recursos. En el caso de las MGs este problema es particularmente crítico dada la capacidad que deben tener de trabajar en forma aislada. Para operar con seguridad la MG normalmente se utiliza una combinación de varios tipos de generadores y también se hace uso de almacenamiento de energía para mantener el equilibrio de la potencia activa. Entre los nuevos sistemas de almacenamiento, las baterías de sodio-sulfuro (NAS) se consideran adecuadas para llevar a cabo diversas tareas de seguridad en las MGs. Las baterías del tipo NAS tienen son capaces de almacenar gran cantidad de energía y densidad de potencia por unidad de volumen y también pueden proporcionar energía tanto en el corto como en el largo alcance. Sin embargo, el inconveniente que estas baterías tienen es que hay pocos modelos que representan fielmente su comportamiento dinámico. Para un estudio adecuado de la seguridad de MGs usando baterías tipo NAS, es necesario identificar el comportamiento dinámico de estas baterías con un modelo preciso. Este artículo presenta el modelado detallado y simulación dinámica de un dispositivo de almacenamiento tipo NAS para su uso en microredes. También se describe el sistema de acondicionamiento de potencia (DSTATCOM) que se utiliza para conectar la batería NAS con la MG y la estrategia de control. Por último, el modelo de la batería NAS se implementa en el entorno de MATLAB / Simulink, poniéndolo a prueba en una microred.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23857
Sarasua, Antonio Ernesto; Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes; Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Quí­micas y Naturales. Centro de Investigación y Desarrollo Tecnológico; Revista de Ciencia y Tecnología; 15; 20; 12-2013; 5-10
0329-8922
1851-7587
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23857
identifier_str_mv Sarasua, Antonio Ernesto; Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Modelo dinámico de batería de sodio sulfuro para su aplicación en microredes; Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Quí­micas y Naturales. Centro de Investigación y Desarrollo Tecnológico; Revista de Ciencia y Tecnología; 15; 20; 12-2013; 5-10
0329-8922
1851-7587
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/137
info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/4w3v8y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Quí­micas y Naturales. Centro de Investigación y Desarrollo Tecnológico
publisher.none.fl_str_mv Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Quí­micas y Naturales. Centro de Investigación y Desarrollo Tecnológico
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083368078278656
score 13.22299