An interaction-aware approach for social influence maximization
- Autores
- Alonso, Diego Gabriel; Monteserin, Ariel José; Berdun, Luis Sebastian
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Microblogging networks are considered a great source of social influence. One of its characteristics is their high dynamism. This fact produces that influential users continuously change according with time and topic. Several social networks metrics have been defined to rank influential users. However, these metrics fail to capture the dynamism of microblogging networks. For this reason, we propose an approach based on Credit Distribution model to identify the influential users of a microblogging social network by performing an online analysis of the users’ interactions. Moreover, we present a comparison of our approach with well-known metrics used for influencers ranking. The experiments were carried out in Twitter during sport events (football matches) and new product (video games) launchings. The results showed that our approach outperforms the metric-based rankings in terms of the influence spread. This confirms the importance of being updated for identifying influential users.
Fil: Alonso, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Berdun, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
Social Influence Maximization
Social Network Modeling
Influencers Discovering
Viral Marketing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231425
Ver los metadatos del registro completo
id |
CONICETDig_37329bdb5c3c30d9f26affe811ed3026 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231425 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An interaction-aware approach for social influence maximizationAlonso, Diego GabrielMonteserin, Ariel JoséBerdun, Luis SebastianSocial Influence MaximizationSocial Network ModelingInfluencers DiscoveringViral Marketinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Microblogging networks are considered a great source of social influence. One of its characteristics is their high dynamism. This fact produces that influential users continuously change according with time and topic. Several social networks metrics have been defined to rank influential users. However, these metrics fail to capture the dynamism of microblogging networks. For this reason, we propose an approach based on Credit Distribution model to identify the influential users of a microblogging social network by performing an online analysis of the users’ interactions. Moreover, we present a comparison of our approach with well-known metrics used for influencers ranking. The experiments were carried out in Twitter during sport events (football matches) and new product (video games) launchings. The results showed that our approach outperforms the metric-based rankings in terms of the influence spread. This confirms the importance of being updated for identifying influential users.Fil: Alonso, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Berdun, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaInstitute of Electrical and Electronics Engineers2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231425Alonso, Diego Gabriel; Monteserin, Ariel José; Berdun, Luis Sebastian; An interaction-aware approach for social influence maximization; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 21; 11; 9-2023; 1171-11801548-0992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/7022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:45:41Zoai:ri.conicet.gov.ar:11336/231425instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:45:41.392CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An interaction-aware approach for social influence maximization |
title |
An interaction-aware approach for social influence maximization |
spellingShingle |
An interaction-aware approach for social influence maximization Alonso, Diego Gabriel Social Influence Maximization Social Network Modeling Influencers Discovering Viral Marketing |
title_short |
An interaction-aware approach for social influence maximization |
title_full |
An interaction-aware approach for social influence maximization |
title_fullStr |
An interaction-aware approach for social influence maximization |
title_full_unstemmed |
An interaction-aware approach for social influence maximization |
title_sort |
An interaction-aware approach for social influence maximization |
dc.creator.none.fl_str_mv |
Alonso, Diego Gabriel Monteserin, Ariel José Berdun, Luis Sebastian |
author |
Alonso, Diego Gabriel |
author_facet |
Alonso, Diego Gabriel Monteserin, Ariel José Berdun, Luis Sebastian |
author_role |
author |
author2 |
Monteserin, Ariel José Berdun, Luis Sebastian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Social Influence Maximization Social Network Modeling Influencers Discovering Viral Marketing |
topic |
Social Influence Maximization Social Network Modeling Influencers Discovering Viral Marketing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Microblogging networks are considered a great source of social influence. One of its characteristics is their high dynamism. This fact produces that influential users continuously change according with time and topic. Several social networks metrics have been defined to rank influential users. However, these metrics fail to capture the dynamism of microblogging networks. For this reason, we propose an approach based on Credit Distribution model to identify the influential users of a microblogging social network by performing an online analysis of the users’ interactions. Moreover, we present a comparison of our approach with well-known metrics used for influencers ranking. The experiments were carried out in Twitter during sport events (football matches) and new product (video games) launchings. The results showed that our approach outperforms the metric-based rankings in terms of the influence spread. This confirms the importance of being updated for identifying influential users. Fil: Alonso, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Berdun, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
Microblogging networks are considered a great source of social influence. One of its characteristics is their high dynamism. This fact produces that influential users continuously change according with time and topic. Several social networks metrics have been defined to rank influential users. However, these metrics fail to capture the dynamism of microblogging networks. For this reason, we propose an approach based on Credit Distribution model to identify the influential users of a microblogging social network by performing an online analysis of the users’ interactions. Moreover, we present a comparison of our approach with well-known metrics used for influencers ranking. The experiments were carried out in Twitter during sport events (football matches) and new product (video games) launchings. The results showed that our approach outperforms the metric-based rankings in terms of the influence spread. This confirms the importance of being updated for identifying influential users. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231425 Alonso, Diego Gabriel; Monteserin, Ariel José; Berdun, Luis Sebastian; An interaction-aware approach for social influence maximization; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 21; 11; 9-2023; 1171-1180 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231425 |
identifier_str_mv |
Alonso, Diego Gabriel; Monteserin, Ariel José; Berdun, Luis Sebastian; An interaction-aware approach for social influence maximization; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 21; 11; 9-2023; 1171-1180 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/7022 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606010413973504 |
score |
13.001348 |