The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc
- Autores
- Daza Perilla, Ingrid Vanessa; Sgró, Mario Agustín; Baravalle, Laura Daniela; Alonso, Maria Victoria; Villalón, Carolina Inés; Lares Harbin Latorre, Marcelo; Soto, M.; Nilo Castellón, José Luis; Valotto, Carlos Alberto; Cortés, P. Marchant; Minniti, Dante; Hempel, M.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The automated identification of extragalactic objects in large surveys provides reliable and reproducible samples of galaxies in less time than procedures involving human interaction. However, regions near the Galactic disc are more challenging due to the dust extinction. We present the methodology for the automatic classification of galaxies and non-galaxies at low Galactic latitude regions using both images and photometric and morphological near-IR data from the VISTA Variables in the Vía Láctea eXtended (VVVX) survey. Using the VVV NIR Galaxy Catalogue (VVV NIRGC), we analyse by statistical methods the most relevant features for galaxy identification. This catalogue was used to train a convolutional neural network with image data and an XGBoost model with both photometric and morphological data and then to generate a data set of extragalactic candidates. This allows us to derive probability catalogues used to analyse the completeness and purity as a function of the configuration parameters and to explore the best combinations of the models. As a test case, we apply this methodology to the Northern disc region of the VVVX survey, obtaining 172 396 extragalactic candidates with probabilities of being galaxies. We analyse the performance of our methodology in the VVV disc, reaching an F1-score of 0.67, a 65 per cent purity, and a 69 per cent completeness. We present the VVV NIRGC: Northern part of the Galactic disc comprising 1003 new galaxies, with probabilities greater than 0.6 for either model, with visual inspection and with only two previously identified galaxies. In the future, we intend to apply this methodology to other areas of the VVVX survey.
Fil: Daza Perilla, Ingrid Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Sgró, Mario Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Baravalle, Laura Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Alonso, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Villalón, Carolina Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Lares Harbin Latorre, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Soto, M.. Universidad de Atacama; Chile
Fil: Nilo Castellón, José Luis. Universidad de La Serena; Chile
Fil: Valotto, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Cortés, P. Marchant. Universidad de La Serena; Chile
Fil: Minniti, Dante. Universidad Andrés Bello; Chile. Universidade Federal de Santa Catarina; Brasil. Vatican Observatory; Italia
Fil: Hempel, M.. Universidad Andrés Bello; Chile. Max Planck Institute for Astronomy; Alemania - Materia
-
Methods: data analysis
Methods: statistical
Galaxy: general - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/248424
Ver los metadatos del registro completo
id |
CONICETDig_3576e0df150aa41e4bc0b057f7a325c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/248424 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic discDaza Perilla, Ingrid VanessaSgró, Mario AgustínBaravalle, Laura DanielaAlonso, Maria VictoriaVillalón, Carolina InésLares Harbin Latorre, MarceloSoto, M.Nilo Castellón, José LuisValotto, Carlos AlbertoCortés, P. MarchantMinniti, DanteHempel, M.Methods: data analysisMethods: statisticalGalaxy: generalhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1The automated identification of extragalactic objects in large surveys provides reliable and reproducible samples of galaxies in less time than procedures involving human interaction. However, regions near the Galactic disc are more challenging due to the dust extinction. We present the methodology for the automatic classification of galaxies and non-galaxies at low Galactic latitude regions using both images and photometric and morphological near-IR data from the VISTA Variables in the Vía Láctea eXtended (VVVX) survey. Using the VVV NIR Galaxy Catalogue (VVV NIRGC), we analyse by statistical methods the most relevant features for galaxy identification. This catalogue was used to train a convolutional neural network with image data and an XGBoost model with both photometric and morphological data and then to generate a data set of extragalactic candidates. This allows us to derive probability catalogues used to analyse the completeness and purity as a function of the configuration parameters and to explore the best combinations of the models. As a test case, we apply this methodology to the Northern disc region of the VVVX survey, obtaining 172 396 extragalactic candidates with probabilities of being galaxies. We analyse the performance of our methodology in the VVV disc, reaching an F1-score of 0.67, a 65 per cent purity, and a 69 per cent completeness. We present the VVV NIRGC: Northern part of the Galactic disc comprising 1003 new galaxies, with probabilities greater than 0.6 for either model, with visual inspection and with only two previously identified galaxies. In the future, we intend to apply this methodology to other areas of the VVVX survey.Fil: Daza Perilla, Ingrid Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Sgró, Mario Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Baravalle, Laura Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Alonso, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Villalón, Carolina Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Lares Harbin Latorre, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Soto, M.. Universidad de Atacama; ChileFil: Nilo Castellón, José Luis. Universidad de La Serena; ChileFil: Valotto, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Cortés, P. Marchant. Universidad de La Serena; ChileFil: Minniti, Dante. Universidad Andrés Bello; Chile. Universidade Federal de Santa Catarina; Brasil. Vatican Observatory; ItaliaFil: Hempel, M.. Universidad Andrés Bello; Chile. Max Planck Institute for Astronomy; AlemaniaWiley Blackwell Publishing, Inc2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248424Daza Perilla, Ingrid Vanessa; Sgró, Mario Agustín; Baravalle, Laura Daniela; Alonso, Maria Victoria; Villalón, Carolina Inés; et al.; The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 524; 1; 9-2023; 678-6940035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/524/1/678/7199801info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad1767info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2306.07141info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:17Zoai:ri.conicet.gov.ar:11336/248424instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:17.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc |
title |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc |
spellingShingle |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc Daza Perilla, Ingrid Vanessa Methods: data analysis Methods: statistical Galaxy: general |
title_short |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc |
title_full |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc |
title_fullStr |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc |
title_full_unstemmed |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc |
title_sort |
The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc |
dc.creator.none.fl_str_mv |
Daza Perilla, Ingrid Vanessa Sgró, Mario Agustín Baravalle, Laura Daniela Alonso, Maria Victoria Villalón, Carolina Inés Lares Harbin Latorre, Marcelo Soto, M. Nilo Castellón, José Luis Valotto, Carlos Alberto Cortés, P. Marchant Minniti, Dante Hempel, M. |
author |
Daza Perilla, Ingrid Vanessa |
author_facet |
Daza Perilla, Ingrid Vanessa Sgró, Mario Agustín Baravalle, Laura Daniela Alonso, Maria Victoria Villalón, Carolina Inés Lares Harbin Latorre, Marcelo Soto, M. Nilo Castellón, José Luis Valotto, Carlos Alberto Cortés, P. Marchant Minniti, Dante Hempel, M. |
author_role |
author |
author2 |
Sgró, Mario Agustín Baravalle, Laura Daniela Alonso, Maria Victoria Villalón, Carolina Inés Lares Harbin Latorre, Marcelo Soto, M. Nilo Castellón, José Luis Valotto, Carlos Alberto Cortés, P. Marchant Minniti, Dante Hempel, M. |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Methods: data analysis Methods: statistical Galaxy: general |
topic |
Methods: data analysis Methods: statistical Galaxy: general |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The automated identification of extragalactic objects in large surveys provides reliable and reproducible samples of galaxies in less time than procedures involving human interaction. However, regions near the Galactic disc are more challenging due to the dust extinction. We present the methodology for the automatic classification of galaxies and non-galaxies at low Galactic latitude regions using both images and photometric and morphological near-IR data from the VISTA Variables in the Vía Láctea eXtended (VVVX) survey. Using the VVV NIR Galaxy Catalogue (VVV NIRGC), we analyse by statistical methods the most relevant features for galaxy identification. This catalogue was used to train a convolutional neural network with image data and an XGBoost model with both photometric and morphological data and then to generate a data set of extragalactic candidates. This allows us to derive probability catalogues used to analyse the completeness and purity as a function of the configuration parameters and to explore the best combinations of the models. As a test case, we apply this methodology to the Northern disc region of the VVVX survey, obtaining 172 396 extragalactic candidates with probabilities of being galaxies. We analyse the performance of our methodology in the VVV disc, reaching an F1-score of 0.67, a 65 per cent purity, and a 69 per cent completeness. We present the VVV NIRGC: Northern part of the Galactic disc comprising 1003 new galaxies, with probabilities greater than 0.6 for either model, with visual inspection and with only two previously identified galaxies. In the future, we intend to apply this methodology to other areas of the VVVX survey. Fil: Daza Perilla, Ingrid Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Sgró, Mario Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Baravalle, Laura Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Alonso, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Villalón, Carolina Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Lares Harbin Latorre, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Soto, M.. Universidad de Atacama; Chile Fil: Nilo Castellón, José Luis. Universidad de La Serena; Chile Fil: Valotto, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Cortés, P. Marchant. Universidad de La Serena; Chile Fil: Minniti, Dante. Universidad Andrés Bello; Chile. Universidade Federal de Santa Catarina; Brasil. Vatican Observatory; Italia Fil: Hempel, M.. Universidad Andrés Bello; Chile. Max Planck Institute for Astronomy; Alemania |
description |
The automated identification of extragalactic objects in large surveys provides reliable and reproducible samples of galaxies in less time than procedures involving human interaction. However, regions near the Galactic disc are more challenging due to the dust extinction. We present the methodology for the automatic classification of galaxies and non-galaxies at low Galactic latitude regions using both images and photometric and morphological near-IR data from the VISTA Variables in the Vía Láctea eXtended (VVVX) survey. Using the VVV NIR Galaxy Catalogue (VVV NIRGC), we analyse by statistical methods the most relevant features for galaxy identification. This catalogue was used to train a convolutional neural network with image data and an XGBoost model with both photometric and morphological data and then to generate a data set of extragalactic candidates. This allows us to derive probability catalogues used to analyse the completeness and purity as a function of the configuration parameters and to explore the best combinations of the models. As a test case, we apply this methodology to the Northern disc region of the VVVX survey, obtaining 172 396 extragalactic candidates with probabilities of being galaxies. We analyse the performance of our methodology in the VVV disc, reaching an F1-score of 0.67, a 65 per cent purity, and a 69 per cent completeness. We present the VVV NIRGC: Northern part of the Galactic disc comprising 1003 new galaxies, with probabilities greater than 0.6 for either model, with visual inspection and with only two previously identified galaxies. In the future, we intend to apply this methodology to other areas of the VVVX survey. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/248424 Daza Perilla, Ingrid Vanessa; Sgró, Mario Agustín; Baravalle, Laura Daniela; Alonso, Maria Victoria; Villalón, Carolina Inés; et al.; The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 524; 1; 9-2023; 678-694 0035-8711 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/248424 |
identifier_str_mv |
Daza Perilla, Ingrid Vanessa; Sgró, Mario Agustín; Baravalle, Laura Daniela; Alonso, Maria Victoria; Villalón, Carolina Inés; et al.; The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 524; 1; 9-2023; 678-694 0035-8711 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/524/1/678/7199801 info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad1767 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2306.07141 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614311009320960 |
score |
13.070432 |