Automated classification of eclipsing binary systems in the VVV Survey
- Autores
- Daza Perilla, Ingrid Vanessa; Gramajo, Luciana Veronica; Lares Harbin Latorre, Marcelo; Palma, Tali; Ferreira Lopes, C. E.; Minniti, D.; Claria Olmedo, Juan Jose
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With the advent of large-scale photometric surveys of the sky, modern science witnesses the dawn of big data astronomy, where automatic handling and discovery are paramount. In this context, classification tasks are among the key capabilities a data reduction pipeline must possess in order to compile reliable data sets, to accomplish data processing with an efficiency level impossible to achieve by means of detailed processing and human intervention. The VISTA Variables of the Vía Láctea Survey, in the southern part of the Galactic disc, comprises multiepoch photometric data necessary for the potential discovery of variable objects, including eclipsing binary systems (EBs). In this study, we use a recently published catalogue of one hundred EBs, classified by fine-tuning theoretical models according to contact, detached, or semidetached classes belonging to the tile d040 of the VVV. We describe the method implemented to obtain a supervised machine-learning model, capable of classifying EBs using information extracted from the light curves of variable object candidates in the phase space from tile d078. We also discuss the efficiency of the models, the relative importance of the features and the future prospects to construct an extensive data base of EBs in the VVV survey.
Fil: Daza Perilla, Ingrid Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Gramajo, Luciana Veronica. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Lares Harbin Latorre, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Palma, Tali. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Ferreira Lopes, C. E.. Universidad de Atacama.; Chile
Fil: Minniti, D.. Universidad Andrés Bello; Chile
Fil: Claria Olmedo, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina - Materia
-
BINARIES: ECLIPSING
INFRARED: STARS
METHODS: DATA ANALYSIS
METHODS: STATISTICAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/222684
Ver los metadatos del registro completo
id |
CONICETDig_c817ed8f0ccb70adb34d334e044b5a76 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/222684 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automated classification of eclipsing binary systems in the VVV SurveyDaza Perilla, Ingrid VanessaGramajo, Luciana VeronicaLares Harbin Latorre, MarceloPalma, TaliFerreira Lopes, C. E.Minniti, D.Claria Olmedo, Juan JoseBINARIES: ECLIPSINGINFRARED: STARSMETHODS: DATA ANALYSISMETHODS: STATISTICALhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1With the advent of large-scale photometric surveys of the sky, modern science witnesses the dawn of big data astronomy, where automatic handling and discovery are paramount. In this context, classification tasks are among the key capabilities a data reduction pipeline must possess in order to compile reliable data sets, to accomplish data processing with an efficiency level impossible to achieve by means of detailed processing and human intervention. The VISTA Variables of the Vía Láctea Survey, in the southern part of the Galactic disc, comprises multiepoch photometric data necessary for the potential discovery of variable objects, including eclipsing binary systems (EBs). In this study, we use a recently published catalogue of one hundred EBs, classified by fine-tuning theoretical models according to contact, detached, or semidetached classes belonging to the tile d040 of the VVV. We describe the method implemented to obtain a supervised machine-learning model, capable of classifying EBs using information extracted from the light curves of variable object candidates in the phase space from tile d078. We also discuss the efficiency of the models, the relative importance of the features and the future prospects to construct an extensive data base of EBs in the VVV survey.Fil: Daza Perilla, Ingrid Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Gramajo, Luciana Veronica. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Lares Harbin Latorre, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Palma, Tali. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ferreira Lopes, C. E.. Universidad de Atacama.; ChileFil: Minniti, D.. Universidad Andrés Bello; ChileFil: Claria Olmedo, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaWiley Blackwell Publishing, Inc2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222684Daza Perilla, Ingrid Vanessa; Gramajo, Luciana Veronica; Lares Harbin Latorre, Marcelo; Palma, Tali; Ferreira Lopes, C. E.; et al.; Automated classification of eclipsing binary systems in the VVV Survey; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 520; 1; 3-2023; 828-8380035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/520/1/828/6988196info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad141info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:18Zoai:ri.conicet.gov.ar:11336/222684instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:18.648CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automated classification of eclipsing binary systems in the VVV Survey |
title |
Automated classification of eclipsing binary systems in the VVV Survey |
spellingShingle |
Automated classification of eclipsing binary systems in the VVV Survey Daza Perilla, Ingrid Vanessa BINARIES: ECLIPSING INFRARED: STARS METHODS: DATA ANALYSIS METHODS: STATISTICAL |
title_short |
Automated classification of eclipsing binary systems in the VVV Survey |
title_full |
Automated classification of eclipsing binary systems in the VVV Survey |
title_fullStr |
Automated classification of eclipsing binary systems in the VVV Survey |
title_full_unstemmed |
Automated classification of eclipsing binary systems in the VVV Survey |
title_sort |
Automated classification of eclipsing binary systems in the VVV Survey |
dc.creator.none.fl_str_mv |
Daza Perilla, Ingrid Vanessa Gramajo, Luciana Veronica Lares Harbin Latorre, Marcelo Palma, Tali Ferreira Lopes, C. E. Minniti, D. Claria Olmedo, Juan Jose |
author |
Daza Perilla, Ingrid Vanessa |
author_facet |
Daza Perilla, Ingrid Vanessa Gramajo, Luciana Veronica Lares Harbin Latorre, Marcelo Palma, Tali Ferreira Lopes, C. E. Minniti, D. Claria Olmedo, Juan Jose |
author_role |
author |
author2 |
Gramajo, Luciana Veronica Lares Harbin Latorre, Marcelo Palma, Tali Ferreira Lopes, C. E. Minniti, D. Claria Olmedo, Juan Jose |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
BINARIES: ECLIPSING INFRARED: STARS METHODS: DATA ANALYSIS METHODS: STATISTICAL |
topic |
BINARIES: ECLIPSING INFRARED: STARS METHODS: DATA ANALYSIS METHODS: STATISTICAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
With the advent of large-scale photometric surveys of the sky, modern science witnesses the dawn of big data astronomy, where automatic handling and discovery are paramount. In this context, classification tasks are among the key capabilities a data reduction pipeline must possess in order to compile reliable data sets, to accomplish data processing with an efficiency level impossible to achieve by means of detailed processing and human intervention. The VISTA Variables of the Vía Láctea Survey, in the southern part of the Galactic disc, comprises multiepoch photometric data necessary for the potential discovery of variable objects, including eclipsing binary systems (EBs). In this study, we use a recently published catalogue of one hundred EBs, classified by fine-tuning theoretical models according to contact, detached, or semidetached classes belonging to the tile d040 of the VVV. We describe the method implemented to obtain a supervised machine-learning model, capable of classifying EBs using information extracted from the light curves of variable object candidates in the phase space from tile d078. We also discuss the efficiency of the models, the relative importance of the features and the future prospects to construct an extensive data base of EBs in the VVV survey. Fil: Daza Perilla, Ingrid Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Gramajo, Luciana Veronica. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Lares Harbin Latorre, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Palma, Tali. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Ferreira Lopes, C. E.. Universidad de Atacama.; Chile Fil: Minniti, D.. Universidad Andrés Bello; Chile Fil: Claria Olmedo, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina |
description |
With the advent of large-scale photometric surveys of the sky, modern science witnesses the dawn of big data astronomy, where automatic handling and discovery are paramount. In this context, classification tasks are among the key capabilities a data reduction pipeline must possess in order to compile reliable data sets, to accomplish data processing with an efficiency level impossible to achieve by means of detailed processing and human intervention. The VISTA Variables of the Vía Láctea Survey, in the southern part of the Galactic disc, comprises multiepoch photometric data necessary for the potential discovery of variable objects, including eclipsing binary systems (EBs). In this study, we use a recently published catalogue of one hundred EBs, classified by fine-tuning theoretical models according to contact, detached, or semidetached classes belonging to the tile d040 of the VVV. We describe the method implemented to obtain a supervised machine-learning model, capable of classifying EBs using information extracted from the light curves of variable object candidates in the phase space from tile d078. We also discuss the efficiency of the models, the relative importance of the features and the future prospects to construct an extensive data base of EBs in the VVV survey. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/222684 Daza Perilla, Ingrid Vanessa; Gramajo, Luciana Veronica; Lares Harbin Latorre, Marcelo; Palma, Tali; Ferreira Lopes, C. E.; et al.; Automated classification of eclipsing binary systems in the VVV Survey; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 520; 1; 3-2023; 828-838 0035-8711 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/222684 |
identifier_str_mv |
Daza Perilla, Ingrid Vanessa; Gramajo, Luciana Veronica; Lares Harbin Latorre, Marcelo; Palma, Tali; Ferreira Lopes, C. E.; et al.; Automated classification of eclipsing binary systems in the VVV Survey; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 520; 1; 3-2023; 828-838 0035-8711 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/520/1/828/6988196 info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad141 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613970127749120 |
score |
13.070432 |