Solvable Quantum Grassmann matrices
- Autores
- Silva, Guillermo Ariel; D Anninos
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We explore systems with a large number of fermionic degrees of freedomsubject to non-local interactions. We study both vector and matrix-like modelswith quartic interactions. The exact thermal partition function is expressed interms of an ordinary bosonic integral, which has an eigenvalue repulsion term inthe matrix case. We calculate real time correlations at finite temperature andanalyze the thermal phase structure. When possible, calculations are performedin both the original Hilbert space as well as the bosonic picture, and the exactmap between the two is explained. At large N, there is a phase transition toa highly entropic high temperature phase from a low temperature low entropyphase. Thermal two-point functions decay in time in the high temperature phase.
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: D Anninos. Institute For Advanced Studies. School Of Natural Sciences; Estados Unidos - Materia
-
Grassman Matrices
Large N
Matrix Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64431
Ver los metadatos del registro completo
id |
CONICETDig_3537bf5f4f735b56188f2c081b23f7c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64431 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solvable Quantum Grassmann matricesSilva, Guillermo ArielD AnninosGrassman MatricesLarge NMatrix Modelhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We explore systems with a large number of fermionic degrees of freedomsubject to non-local interactions. We study both vector and matrix-like modelswith quartic interactions. The exact thermal partition function is expressed interms of an ordinary bosonic integral, which has an eigenvalue repulsion term inthe matrix case. We calculate real time correlations at finite temperature andanalyze the thermal phase structure. When possible, calculations are performedin both the original Hilbert space as well as the bosonic picture, and the exactmap between the two is explained. At large N, there is a phase transition toa highly entropic high temperature phase from a low temperature low entropyphase. Thermal two-point functions decay in time in the high temperature phase.Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: D Anninos. Institute For Advanced Studies. School Of Natural Sciences; Estados UnidosIOP Publishing2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64431Silva, Guillermo Ariel; D Anninos; Solvable Quantum Grassmann matrices; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 3-2017; 43102-431231742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa668finfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/aa668f/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:45Zoai:ri.conicet.gov.ar:11336/64431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:46.217CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solvable Quantum Grassmann matrices |
title |
Solvable Quantum Grassmann matrices |
spellingShingle |
Solvable Quantum Grassmann matrices Silva, Guillermo Ariel Grassman Matrices Large N Matrix Model |
title_short |
Solvable Quantum Grassmann matrices |
title_full |
Solvable Quantum Grassmann matrices |
title_fullStr |
Solvable Quantum Grassmann matrices |
title_full_unstemmed |
Solvable Quantum Grassmann matrices |
title_sort |
Solvable Quantum Grassmann matrices |
dc.creator.none.fl_str_mv |
Silva, Guillermo Ariel D Anninos |
author |
Silva, Guillermo Ariel |
author_facet |
Silva, Guillermo Ariel D Anninos |
author_role |
author |
author2 |
D Anninos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Grassman Matrices Large N Matrix Model |
topic |
Grassman Matrices Large N Matrix Model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We explore systems with a large number of fermionic degrees of freedomsubject to non-local interactions. We study both vector and matrix-like modelswith quartic interactions. The exact thermal partition function is expressed interms of an ordinary bosonic integral, which has an eigenvalue repulsion term inthe matrix case. We calculate real time correlations at finite temperature andanalyze the thermal phase structure. When possible, calculations are performedin both the original Hilbert space as well as the bosonic picture, and the exactmap between the two is explained. At large N, there is a phase transition toa highly entropic high temperature phase from a low temperature low entropyphase. Thermal two-point functions decay in time in the high temperature phase. Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: D Anninos. Institute For Advanced Studies. School Of Natural Sciences; Estados Unidos |
description |
We explore systems with a large number of fermionic degrees of freedomsubject to non-local interactions. We study both vector and matrix-like modelswith quartic interactions. The exact thermal partition function is expressed interms of an ordinary bosonic integral, which has an eigenvalue repulsion term inthe matrix case. We calculate real time correlations at finite temperature andanalyze the thermal phase structure. When possible, calculations are performedin both the original Hilbert space as well as the bosonic picture, and the exactmap between the two is explained. At large N, there is a phase transition toa highly entropic high temperature phase from a low temperature low entropyphase. Thermal two-point functions decay in time in the high temperature phase. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64431 Silva, Guillermo Ariel; D Anninos; Solvable Quantum Grassmann matrices; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 3-2017; 43102-43123 1742-5468 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64431 |
identifier_str_mv |
Silva, Guillermo Ariel; D Anninos; Solvable Quantum Grassmann matrices; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 3-2017; 43102-43123 1742-5468 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa668f info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/aa668f/meta |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613346608807936 |
score |
13.070432 |