Solvable Quantum Grassmann matrices

Autores
Silva, Guillermo Ariel; D Anninos
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We explore systems with a large number of fermionic degrees of freedomsubject to non-local interactions. We study both vector and matrix-like modelswith quartic interactions. The exact thermal partition function is expressed interms of an ordinary bosonic integral, which has an eigenvalue repulsion term inthe matrix case. We calculate real time correlations at finite temperature andanalyze the thermal phase structure. When possible, calculations are performedin both the original Hilbert space as well as the bosonic picture, and the exactmap between the two is explained. At large N, there is a phase transition toa highly entropic high temperature phase from a low temperature low entropyphase. Thermal two-point functions decay in time in the high temperature phase.
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: D Anninos. Institute For Advanced Studies. School Of Natural Sciences; Estados Unidos
Materia
Grassman Matrices
Large N
Matrix Model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/64431

id CONICETDig_3537bf5f4f735b56188f2c081b23f7c3
oai_identifier_str oai:ri.conicet.gov.ar:11336/64431
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Solvable Quantum Grassmann matricesSilva, Guillermo ArielD AnninosGrassman MatricesLarge NMatrix Modelhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We explore systems with a large number of fermionic degrees of freedomsubject to non-local interactions. We study both vector and matrix-like modelswith quartic interactions. The exact thermal partition function is expressed interms of an ordinary bosonic integral, which has an eigenvalue repulsion term inthe matrix case. We calculate real time correlations at finite temperature andanalyze the thermal phase structure. When possible, calculations are performedin both the original Hilbert space as well as the bosonic picture, and the exactmap between the two is explained. At large N, there is a phase transition toa highly entropic high temperature phase from a low temperature low entropyphase. Thermal two-point functions decay in time in the high temperature phase.Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: D Anninos. Institute For Advanced Studies. School Of Natural Sciences; Estados UnidosIOP Publishing2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64431Silva, Guillermo Ariel; D Anninos; Solvable Quantum Grassmann matrices; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 3-2017; 43102-431231742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa668finfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/aa668f/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:45Zoai:ri.conicet.gov.ar:11336/64431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:46.217CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Solvable Quantum Grassmann matrices
title Solvable Quantum Grassmann matrices
spellingShingle Solvable Quantum Grassmann matrices
Silva, Guillermo Ariel
Grassman Matrices
Large N
Matrix Model
title_short Solvable Quantum Grassmann matrices
title_full Solvable Quantum Grassmann matrices
title_fullStr Solvable Quantum Grassmann matrices
title_full_unstemmed Solvable Quantum Grassmann matrices
title_sort Solvable Quantum Grassmann matrices
dc.creator.none.fl_str_mv Silva, Guillermo Ariel
D Anninos
author Silva, Guillermo Ariel
author_facet Silva, Guillermo Ariel
D Anninos
author_role author
author2 D Anninos
author2_role author
dc.subject.none.fl_str_mv Grassman Matrices
Large N
Matrix Model
topic Grassman Matrices
Large N
Matrix Model
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We explore systems with a large number of fermionic degrees of freedomsubject to non-local interactions. We study both vector and matrix-like modelswith quartic interactions. The exact thermal partition function is expressed interms of an ordinary bosonic integral, which has an eigenvalue repulsion term inthe matrix case. We calculate real time correlations at finite temperature andanalyze the thermal phase structure. When possible, calculations are performedin both the original Hilbert space as well as the bosonic picture, and the exactmap between the two is explained. At large N, there is a phase transition toa highly entropic high temperature phase from a low temperature low entropyphase. Thermal two-point functions decay in time in the high temperature phase.
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: D Anninos. Institute For Advanced Studies. School Of Natural Sciences; Estados Unidos
description We explore systems with a large number of fermionic degrees of freedomsubject to non-local interactions. We study both vector and matrix-like modelswith quartic interactions. The exact thermal partition function is expressed interms of an ordinary bosonic integral, which has an eigenvalue repulsion term inthe matrix case. We calculate real time correlations at finite temperature andanalyze the thermal phase structure. When possible, calculations are performedin both the original Hilbert space as well as the bosonic picture, and the exactmap between the two is explained. At large N, there is a phase transition toa highly entropic high temperature phase from a low temperature low entropyphase. Thermal two-point functions decay in time in the high temperature phase.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/64431
Silva, Guillermo Ariel; D Anninos; Solvable Quantum Grassmann matrices; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 3-2017; 43102-43123
1742-5468
CONICET Digital
CONICET
url http://hdl.handle.net/11336/64431
identifier_str_mv Silva, Guillermo Ariel; D Anninos; Solvable Quantum Grassmann matrices; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 3-2017; 43102-43123
1742-5468
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa668f
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/aa668f/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613346608807936
score 13.070432