Solvable Quantum Grassmann Matrices
- Autores
- Anninos, Dionysios; Silva, Guillermo Ariel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We explore systems with a large number of fermionic degrees of freedom subject to non-local interactions. We study both vector and matrix-like models with quartic interactions. The exact thermal partition function is expressed in terms of an ordinary bosonic integral, which has an eigenvalue repulsion term in the matrix case. We calculate real time correlations at finite temperature and analyze the thermal phase structure. When possible, calculations are performed in both the original Hilbert space as well as the bosonic picture, and the exact map between the two is explained. At large N, there is a phase transition to a highly entropic high temperature phase from a low temperature low entropy phase. Thermal two-point functions decay in time in the high temperature phase.
Instituto de Física La Plata - Materia
-
Ciencias Exactas
Física
AdS/CFT correspondence
Correlation functions
Matrix models
Quantum phase transitions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123980
Ver los metadatos del registro completo
id |
SEDICI_44a8757aaf95c74b2e977aec27f081e3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123980 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Solvable Quantum Grassmann MatricesAnninos, DionysiosSilva, Guillermo ArielCiencias ExactasFísicaAdS/CFT correspondenceCorrelation functionsMatrix modelsQuantum phase transitionsWe explore systems with a large number of fermionic degrees of freedom subject to non-local interactions. We study both vector and matrix-like models with quartic interactions. The exact thermal partition function is expressed in terms of an ordinary bosonic integral, which has an eigenvalue repulsion term in the matrix case. We calculate real time correlations at finite temperature and analyze the thermal phase structure. When possible, calculations are performed in both the original Hilbert space as well as the bosonic picture, and the exact map between the two is explained. At large N, there is a phase transition to a highly entropic high temperature phase from a low temperature low entropy phase. Thermal two-point functions decay in time in the high temperature phase.Instituto de Física La Plata2017-04-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/123980enginfo:eu-repo/semantics/altIdentifier/issn/1742-5468info:eu-repo/semantics/altIdentifier/arxiv/1612.03795info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa668finfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:33Zoai:sedici.unlp.edu.ar:10915/123980Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:33.697SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Solvable Quantum Grassmann Matrices |
title |
Solvable Quantum Grassmann Matrices |
spellingShingle |
Solvable Quantum Grassmann Matrices Anninos, Dionysios Ciencias Exactas Física AdS/CFT correspondence Correlation functions Matrix models Quantum phase transitions |
title_short |
Solvable Quantum Grassmann Matrices |
title_full |
Solvable Quantum Grassmann Matrices |
title_fullStr |
Solvable Quantum Grassmann Matrices |
title_full_unstemmed |
Solvable Quantum Grassmann Matrices |
title_sort |
Solvable Quantum Grassmann Matrices |
dc.creator.none.fl_str_mv |
Anninos, Dionysios Silva, Guillermo Ariel |
author |
Anninos, Dionysios |
author_facet |
Anninos, Dionysios Silva, Guillermo Ariel |
author_role |
author |
author2 |
Silva, Guillermo Ariel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física AdS/CFT correspondence Correlation functions Matrix models Quantum phase transitions |
topic |
Ciencias Exactas Física AdS/CFT correspondence Correlation functions Matrix models Quantum phase transitions |
dc.description.none.fl_txt_mv |
We explore systems with a large number of fermionic degrees of freedom subject to non-local interactions. We study both vector and matrix-like models with quartic interactions. The exact thermal partition function is expressed in terms of an ordinary bosonic integral, which has an eigenvalue repulsion term in the matrix case. We calculate real time correlations at finite temperature and analyze the thermal phase structure. When possible, calculations are performed in both the original Hilbert space as well as the bosonic picture, and the exact map between the two is explained. At large N, there is a phase transition to a highly entropic high temperature phase from a low temperature low entropy phase. Thermal two-point functions decay in time in the high temperature phase. Instituto de Física La Plata |
description |
We explore systems with a large number of fermionic degrees of freedom subject to non-local interactions. We study both vector and matrix-like models with quartic interactions. The exact thermal partition function is expressed in terms of an ordinary bosonic integral, which has an eigenvalue repulsion term in the matrix case. We calculate real time correlations at finite temperature and analyze the thermal phase structure. When possible, calculations are performed in both the original Hilbert space as well as the bosonic picture, and the exact map between the two is explained. At large N, there is a phase transition to a highly entropic high temperature phase from a low temperature low entropy phase. Thermal two-point functions decay in time in the high temperature phase. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123980 |
url |
http://sedici.unlp.edu.ar/handle/10915/123980 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1742-5468 info:eu-repo/semantics/altIdentifier/arxiv/1612.03795 info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa668f |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616174289027072 |
score |
13.070432 |