Solvable Quantum Grassmann Matrices

Autores
Anninos, Dionysios; Silva, Guillermo Ariel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We explore systems with a large number of fermionic degrees of freedom subject to non-local interactions. We study both vector and matrix-like models with quartic interactions. The exact thermal partition function is expressed in terms of an ordinary bosonic integral, which has an eigenvalue repulsion term in the matrix case. We calculate real time correlations at finite temperature and analyze the thermal phase structure. When possible, calculations are performed in both the original Hilbert space as well as the bosonic picture, and the exact map between the two is explained. At large N, there is a phase transition to a highly entropic high temperature phase from a low temperature low entropy phase. Thermal two-point functions decay in time in the high temperature phase.
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
AdS/CFT correspondence
Correlation functions
Matrix models
Quantum phase transitions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/123980

id SEDICI_44a8757aaf95c74b2e977aec27f081e3
oai_identifier_str oai:sedici.unlp.edu.ar:10915/123980
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Solvable Quantum Grassmann MatricesAnninos, DionysiosSilva, Guillermo ArielCiencias ExactasFísicaAdS/CFT correspondenceCorrelation functionsMatrix modelsQuantum phase transitionsWe explore systems with a large number of fermionic degrees of freedom subject to non-local interactions. We study both vector and matrix-like models with quartic interactions. The exact thermal partition function is expressed in terms of an ordinary bosonic integral, which has an eigenvalue repulsion term in the matrix case. We calculate real time correlations at finite temperature and analyze the thermal phase structure. When possible, calculations are performed in both the original Hilbert space as well as the bosonic picture, and the exact map between the two is explained. At large N, there is a phase transition to a highly entropic high temperature phase from a low temperature low entropy phase. Thermal two-point functions decay in time in the high temperature phase.Instituto de Física La Plata2017-04-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/123980enginfo:eu-repo/semantics/altIdentifier/issn/1742-5468info:eu-repo/semantics/altIdentifier/arxiv/1612.03795info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa668finfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:33Zoai:sedici.unlp.edu.ar:10915/123980Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:33.697SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Solvable Quantum Grassmann Matrices
title Solvable Quantum Grassmann Matrices
spellingShingle Solvable Quantum Grassmann Matrices
Anninos, Dionysios
Ciencias Exactas
Física
AdS/CFT correspondence
Correlation functions
Matrix models
Quantum phase transitions
title_short Solvable Quantum Grassmann Matrices
title_full Solvable Quantum Grassmann Matrices
title_fullStr Solvable Quantum Grassmann Matrices
title_full_unstemmed Solvable Quantum Grassmann Matrices
title_sort Solvable Quantum Grassmann Matrices
dc.creator.none.fl_str_mv Anninos, Dionysios
Silva, Guillermo Ariel
author Anninos, Dionysios
author_facet Anninos, Dionysios
Silva, Guillermo Ariel
author_role author
author2 Silva, Guillermo Ariel
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
AdS/CFT correspondence
Correlation functions
Matrix models
Quantum phase transitions
topic Ciencias Exactas
Física
AdS/CFT correspondence
Correlation functions
Matrix models
Quantum phase transitions
dc.description.none.fl_txt_mv We explore systems with a large number of fermionic degrees of freedom subject to non-local interactions. We study both vector and matrix-like models with quartic interactions. The exact thermal partition function is expressed in terms of an ordinary bosonic integral, which has an eigenvalue repulsion term in the matrix case. We calculate real time correlations at finite temperature and analyze the thermal phase structure. When possible, calculations are performed in both the original Hilbert space as well as the bosonic picture, and the exact map between the two is explained. At large N, there is a phase transition to a highly entropic high temperature phase from a low temperature low entropy phase. Thermal two-point functions decay in time in the high temperature phase.
Instituto de Física La Plata
description We explore systems with a large number of fermionic degrees of freedom subject to non-local interactions. We study both vector and matrix-like models with quartic interactions. The exact thermal partition function is expressed in terms of an ordinary bosonic integral, which has an eigenvalue repulsion term in the matrix case. We calculate real time correlations at finite temperature and analyze the thermal phase structure. When possible, calculations are performed in both the original Hilbert space as well as the bosonic picture, and the exact map between the two is explained. At large N, there is a phase transition to a highly entropic high temperature phase from a low temperature low entropy phase. Thermal two-point functions decay in time in the high temperature phase.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/123980
url http://sedici.unlp.edu.ar/handle/10915/123980
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1742-5468
info:eu-repo/semantics/altIdentifier/arxiv/1612.03795
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa668f
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616174289027072
score 13.070432