Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad

Autores
Villafañe, Roxana Noelia; Luchi, Adriano Martín; Peruchena, Nelida Maria; Angelina, Emilio Luis
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Las redes neuronales basadas en grafo (GNN) han ganado importancia estos últimos años debido a su versatilidad para trabajar en datos no estructurados. La complejidad de los datos no estructurados ha traído desafíos en el campo del aprendizaje profundo que tradicionalmente se ha definido para espacios euclídeos (Liao, 2021). Al respecto, recientemente han surgido propuestas para lidiar con estos inconvenientes, como son las redes basadas en grafo aumentadas con mecanismos de atención y con gates.El campo de la química, y en particular, de la química computacional no ha sido ajena a estos avances, en los cuales las redes basados en grafos han sido utilizados para predicción de propiedades químicas (Wieder, 2020; Korolev, 2020), diseño molecular (Mercado, 2021), estudio de reacciones (Coley, 2019), entre otras. En particular, el docking molecular es la técnica más popular para cribado virtual de compuestos, es decir, a partir de una gran base de datos, es capaz de ir seleccionando compuestos en etapas, para tener futuros candidatos a posibles fármacos/drogas. En este sentido, la exactitud obtenida mediante el docking molecular es menor comparado a otras técnicas computacionales (dinámica molecular, QM/MM, etc). Sakai et al. (Sakai, 2021) demostraron recientemente que, basándose solamente en la estructura 2D de compuestos, no sólo se pueden estudiar las propiedades físico-químicas sino también la bioactividad de compuestos. En este trabajo se presentan los resultados correspondientes a la optimización de una red convolucional basada en grafo (GCN) vanilla y otras redes aumentadas con mecanismos de atención y con gates. El set de datos corresponde a ligandos clasificados como activos e inactivos, con respecto a su poder inhibitorio, frente a la Cruzipaína, una proteína perteneciente a la familia de las cisteín-proteasas. Estos compuestos se encuentran en formato SMILES o formato de texto, a partir del cual se construye el grafo correspondiente que es la entrada para el modelo de aprendizaje profundo. Los datos pertenecientes a AID1478 presentan un fuerte desbalance de compuestos activos e inactivos, para lo cual en el training set se realizó un random undersampling para dar como resultado una proporción de 1:2 activos/inactivos. Durante el entrenamiento de la red, se realizó la optimización de varios hiperparámetros, a saber: número de capas convolucionales, tasa de aprendizaje, tamaño del bache, número de épocas. La optimización del algoritmo se detuvo mediante early stopping para evitar sobreajuste del modelo. Los resultados obtenidos superan a los obtenidos mediante métodos computacionales más clásicos como el docking en exactitud (~50% accuracy vs ~80% accuracy) y tiempo de cómputo (días vs min).
Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina
Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina
Fil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina
Fil: Angelina, Emilio Luis. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
XVIII Taller Regional de Física Estadística y Aplicaciones a la Materia Condensada
Cordoba
Argentina
Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación
Universidad Nacional de Córdoba. Instituto de Fisica Enrique Gaviola
Materia
INTELIGENCIA ARTIFICIAL
COMPUESTOS BIOACTIVOS
QUIMICA MEDICINAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/172210

id CONICETDig_34ab9fb6064d306b4383144696108fc8
oai_identifier_str oai:ri.conicet.gov.ar:11336/172210
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividadVillafañe, Roxana NoeliaLuchi, Adriano MartínPeruchena, Nelida MariaAngelina, Emilio LuisINTELIGENCIA ARTIFICIALCOMPUESTOS BIOACTIVOSQUIMICA MEDICINALhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Las redes neuronales basadas en grafo (GNN) han ganado importancia estos últimos años debido a su versatilidad para trabajar en datos no estructurados. La complejidad de los datos no estructurados ha traído desafíos en el campo del aprendizaje profundo que tradicionalmente se ha definido para espacios euclídeos (Liao, 2021). Al respecto, recientemente han surgido propuestas para lidiar con estos inconvenientes, como son las redes basadas en grafo aumentadas con mecanismos de atención y con gates.El campo de la química, y en particular, de la química computacional no ha sido ajena a estos avances, en los cuales las redes basados en grafos han sido utilizados para predicción de propiedades químicas (Wieder, 2020; Korolev, 2020), diseño molecular (Mercado, 2021), estudio de reacciones (Coley, 2019), entre otras. En particular, el docking molecular es la técnica más popular para cribado virtual de compuestos, es decir, a partir de una gran base de datos, es capaz de ir seleccionando compuestos en etapas, para tener futuros candidatos a posibles fármacos/drogas. En este sentido, la exactitud obtenida mediante el docking molecular es menor comparado a otras técnicas computacionales (dinámica molecular, QM/MM, etc). Sakai et al. (Sakai, 2021) demostraron recientemente que, basándose solamente en la estructura 2D de compuestos, no sólo se pueden estudiar las propiedades físico-químicas sino también la bioactividad de compuestos. En este trabajo se presentan los resultados correspondientes a la optimización de una red convolucional basada en grafo (GCN) vanilla y otras redes aumentadas con mecanismos de atención y con gates. El set de datos corresponde a ligandos clasificados como activos e inactivos, con respecto a su poder inhibitorio, frente a la Cruzipaína, una proteína perteneciente a la familia de las cisteín-proteasas. Estos compuestos se encuentran en formato SMILES o formato de texto, a partir del cual se construye el grafo correspondiente que es la entrada para el modelo de aprendizaje profundo. Los datos pertenecientes a AID1478 presentan un fuerte desbalance de compuestos activos e inactivos, para lo cual en el training set se realizó un random undersampling para dar como resultado una proporción de 1:2 activos/inactivos. Durante el entrenamiento de la red, se realizó la optimización de varios hiperparámetros, a saber: número de capas convolucionales, tasa de aprendizaje, tamaño del bache, número de épocas. La optimización del algoritmo se detuvo mediante early stopping para evitar sobreajuste del modelo. Los resultados obtenidos superan a los obtenidos mediante métodos computacionales más clásicos como el docking en exactitud (~50% accuracy vs ~80% accuracy) y tiempo de cómputo (días vs min).Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; ArgentinaFil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; ArgentinaFil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; ArgentinaFil: Angelina, Emilio Luis. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaXVIII Taller Regional de Física Estadística y Aplicaciones a la Materia CondensadaCordobaArgentinaUniversidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y ComputaciónUniversidad Nacional de Córdoba. Instituto de Fisica Enrique GaviolaUniversidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectTallerBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciatext/plainapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172210Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad; XVIII Taller Regional de Física Estadística y Aplicaciones a la Materia Condensada; Cordoba; Argentina; 2021; 53-54CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://sites.google.com/view/trefemac2021/homeNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:12:10Zoai:ri.conicet.gov.ar:11336/172210instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:12:11.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad
title Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad
spellingShingle Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad
Villafañe, Roxana Noelia
INTELIGENCIA ARTIFICIAL
COMPUESTOS BIOACTIVOS
QUIMICA MEDICINAL
title_short Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad
title_full Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad
title_fullStr Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad
title_full_unstemmed Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad
title_sort Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad
dc.creator.none.fl_str_mv Villafañe, Roxana Noelia
Luchi, Adriano Martín
Peruchena, Nelida Maria
Angelina, Emilio Luis
author Villafañe, Roxana Noelia
author_facet Villafañe, Roxana Noelia
Luchi, Adriano Martín
Peruchena, Nelida Maria
Angelina, Emilio Luis
author_role author
author2 Luchi, Adriano Martín
Peruchena, Nelida Maria
Angelina, Emilio Luis
author2_role author
author
author
dc.subject.none.fl_str_mv INTELIGENCIA ARTIFICIAL
COMPUESTOS BIOACTIVOS
QUIMICA MEDICINAL
topic INTELIGENCIA ARTIFICIAL
COMPUESTOS BIOACTIVOS
QUIMICA MEDICINAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Las redes neuronales basadas en grafo (GNN) han ganado importancia estos últimos años debido a su versatilidad para trabajar en datos no estructurados. La complejidad de los datos no estructurados ha traído desafíos en el campo del aprendizaje profundo que tradicionalmente se ha definido para espacios euclídeos (Liao, 2021). Al respecto, recientemente han surgido propuestas para lidiar con estos inconvenientes, como son las redes basadas en grafo aumentadas con mecanismos de atención y con gates.El campo de la química, y en particular, de la química computacional no ha sido ajena a estos avances, en los cuales las redes basados en grafos han sido utilizados para predicción de propiedades químicas (Wieder, 2020; Korolev, 2020), diseño molecular (Mercado, 2021), estudio de reacciones (Coley, 2019), entre otras. En particular, el docking molecular es la técnica más popular para cribado virtual de compuestos, es decir, a partir de una gran base de datos, es capaz de ir seleccionando compuestos en etapas, para tener futuros candidatos a posibles fármacos/drogas. En este sentido, la exactitud obtenida mediante el docking molecular es menor comparado a otras técnicas computacionales (dinámica molecular, QM/MM, etc). Sakai et al. (Sakai, 2021) demostraron recientemente que, basándose solamente en la estructura 2D de compuestos, no sólo se pueden estudiar las propiedades físico-químicas sino también la bioactividad de compuestos. En este trabajo se presentan los resultados correspondientes a la optimización de una red convolucional basada en grafo (GCN) vanilla y otras redes aumentadas con mecanismos de atención y con gates. El set de datos corresponde a ligandos clasificados como activos e inactivos, con respecto a su poder inhibitorio, frente a la Cruzipaína, una proteína perteneciente a la familia de las cisteín-proteasas. Estos compuestos se encuentran en formato SMILES o formato de texto, a partir del cual se construye el grafo correspondiente que es la entrada para el modelo de aprendizaje profundo. Los datos pertenecientes a AID1478 presentan un fuerte desbalance de compuestos activos e inactivos, para lo cual en el training set se realizó un random undersampling para dar como resultado una proporción de 1:2 activos/inactivos. Durante el entrenamiento de la red, se realizó la optimización de varios hiperparámetros, a saber: número de capas convolucionales, tasa de aprendizaje, tamaño del bache, número de épocas. La optimización del algoritmo se detuvo mediante early stopping para evitar sobreajuste del modelo. Los resultados obtenidos superan a los obtenidos mediante métodos computacionales más clásicos como el docking en exactitud (~50% accuracy vs ~80% accuracy) y tiempo de cómputo (días vs min).
Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina
Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina
Fil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina
Fil: Angelina, Emilio Luis. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
XVIII Taller Regional de Física Estadística y Aplicaciones a la Materia Condensada
Cordoba
Argentina
Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación
Universidad Nacional de Córdoba. Instituto de Fisica Enrique Gaviola
description Las redes neuronales basadas en grafo (GNN) han ganado importancia estos últimos años debido a su versatilidad para trabajar en datos no estructurados. La complejidad de los datos no estructurados ha traído desafíos en el campo del aprendizaje profundo que tradicionalmente se ha definido para espacios euclídeos (Liao, 2021). Al respecto, recientemente han surgido propuestas para lidiar con estos inconvenientes, como son las redes basadas en grafo aumentadas con mecanismos de atención y con gates.El campo de la química, y en particular, de la química computacional no ha sido ajena a estos avances, en los cuales las redes basados en grafos han sido utilizados para predicción de propiedades químicas (Wieder, 2020; Korolev, 2020), diseño molecular (Mercado, 2021), estudio de reacciones (Coley, 2019), entre otras. En particular, el docking molecular es la técnica más popular para cribado virtual de compuestos, es decir, a partir de una gran base de datos, es capaz de ir seleccionando compuestos en etapas, para tener futuros candidatos a posibles fármacos/drogas. En este sentido, la exactitud obtenida mediante el docking molecular es menor comparado a otras técnicas computacionales (dinámica molecular, QM/MM, etc). Sakai et al. (Sakai, 2021) demostraron recientemente que, basándose solamente en la estructura 2D de compuestos, no sólo se pueden estudiar las propiedades físico-químicas sino también la bioactividad de compuestos. En este trabajo se presentan los resultados correspondientes a la optimización de una red convolucional basada en grafo (GCN) vanilla y otras redes aumentadas con mecanismos de atención y con gates. El set de datos corresponde a ligandos clasificados como activos e inactivos, con respecto a su poder inhibitorio, frente a la Cruzipaína, una proteína perteneciente a la familia de las cisteín-proteasas. Estos compuestos se encuentran en formato SMILES o formato de texto, a partir del cual se construye el grafo correspondiente que es la entrada para el modelo de aprendizaje profundo. Los datos pertenecientes a AID1478 presentan un fuerte desbalance de compuestos activos e inactivos, para lo cual en el training set se realizó un random undersampling para dar como resultado una proporción de 1:2 activos/inactivos. Durante el entrenamiento de la red, se realizó la optimización de varios hiperparámetros, a saber: número de capas convolucionales, tasa de aprendizaje, tamaño del bache, número de épocas. La optimización del algoritmo se detuvo mediante early stopping para evitar sobreajuste del modelo. Los resultados obtenidos superan a los obtenidos mediante métodos computacionales más clásicos como el docking en exactitud (~50% accuracy vs ~80% accuracy) y tiempo de cómputo (días vs min).
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Taller
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/172210
Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad; XVIII Taller Regional de Física Estadística y Aplicaciones a la Materia Condensada; Cordoba; Argentina; 2021; 53-54
CONICET Digital
CONICET
url http://hdl.handle.net/11336/172210
identifier_str_mv Optimización de redes basadas en grafo para clasificación compuestos químicos según bioactividad; XVIII Taller Regional de Física Estadística y Aplicaciones a la Materia Condensada; Cordoba; Argentina; 2021; 53-54
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://sites.google.com/view/trefemac2021/home
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv text/plain
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación
publisher.none.fl_str_mv Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849873798120079360
score 13.011256