Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity

Autores
Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; Plotnikov, Dmitry; Bartalevev, Sergey; Lavreniuk, Mykola; Skakun, Sergii; Kussul, Nataliia; Le Maire, Guerric; Dupuy, Stéphane; Jarvis, Ian; Defourny, Pierre
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.
Fil: Waldner, François. Université Catholique de Louvain; Bélgica
Fil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Verón, Santiago Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Université Catholique de Louvain; Bélgica
Fil: Zhang, Miao. Chinese Academy of Sciences; República de China
Fil: Wu, Bingfang. Chinese Academy of Sciences; República de China
Fil: Plotnikov, Dmitry. Space Research Institute Of Russian Academy Of Sciences; Rusia. Université Catholique de Louvain; Bélgica
Fil: Bartalevev, Sergey. Space Research Institute Of Russian Academy Of Sciences; Rusia
Fil: Lavreniuk, Mykola. Space Research Institute Nas And Ssa; Ucrania
Fil: Skakun, Sergii. Space Research Institute Nas And Ssa; Ucrania
Fil: Kussul, Nataliia. Space Research Institute Nas And Ssa; Ucrania. Université Catholique de Louvain; Bélgica
Fil: Le Maire, Guerric. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Dupuy, Stéphane. No especifica;
Fil: Jarvis, Ian. Lethbridge Research Centre. Agriculture And Agri-foods; Canadá
Fil: Defourny, Pierre. Université Catholique de Louvain; Bélgica
Materia
LAND-USE
REMOTE-SENSING
JECAM
COMPARISON
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44210

id CONICETDig_34a303b09350c0925ee387404eea4698
oai_identifier_str oai:ri.conicet.gov.ar:11336/44210
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversityWaldner, Françoisde Abelleyra, DiegoVerón, Santiago RamónZhang, MiaoWu, BingfangPlotnikov, DmitryBartalevev, SergeyLavreniuk, MykolaSkakun, SergiiKussul, NataliiaLe Maire, GuerricDupuy, StéphaneJarvis, IanDefourny, PierreLAND-USEREMOTE-SENSINGJECAMCOMPARISONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.Fil: Waldner, François. Université Catholique de Louvain; BélgicaFil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Verón, Santiago Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Université Catholique de Louvain; BélgicaFil: Zhang, Miao. Chinese Academy of Sciences; República de ChinaFil: Wu, Bingfang. Chinese Academy of Sciences; República de ChinaFil: Plotnikov, Dmitry. Space Research Institute Of Russian Academy Of Sciences; Rusia. Université Catholique de Louvain; BélgicaFil: Bartalevev, Sergey. Space Research Institute Of Russian Academy Of Sciences; RusiaFil: Lavreniuk, Mykola. Space Research Institute Nas And Ssa; UcraniaFil: Skakun, Sergii. Space Research Institute Nas And Ssa; UcraniaFil: Kussul, Nataliia. Space Research Institute Nas And Ssa; Ucrania. Université Catholique de Louvain; BélgicaFil: Le Maire, Guerric. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Dupuy, Stéphane. No especifica;Fil: Jarvis, Ian. Lethbridge Research Centre. Agriculture And Agri-foods; CanadáFil: Defourny, Pierre. Université Catholique de Louvain; BélgicaTaylor & Francis2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44210Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; et al.; Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity; Taylor & Francis; International Journal of Remote Sensing; 37; 14; 6-2016; 3196-32310143-11611366-5901CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1194545info:eu-repo/semantics/altIdentifier/doi/10.1080/01431161.2016.1194545info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:49:20Zoai:ri.conicet.gov.ar:11336/44210instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:49:20.274CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
spellingShingle Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
Waldner, François
LAND-USE
REMOTE-SENSING
JECAM
COMPARISON
title_short Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title_full Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title_fullStr Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title_full_unstemmed Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title_sort Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
dc.creator.none.fl_str_mv Waldner, François
de Abelleyra, Diego
Verón, Santiago Ramón
Zhang, Miao
Wu, Bingfang
Plotnikov, Dmitry
Bartalevev, Sergey
Lavreniuk, Mykola
Skakun, Sergii
Kussul, Nataliia
Le Maire, Guerric
Dupuy, Stéphane
Jarvis, Ian
Defourny, Pierre
author Waldner, François
author_facet Waldner, François
de Abelleyra, Diego
Verón, Santiago Ramón
Zhang, Miao
Wu, Bingfang
Plotnikov, Dmitry
Bartalevev, Sergey
Lavreniuk, Mykola
Skakun, Sergii
Kussul, Nataliia
Le Maire, Guerric
Dupuy, Stéphane
Jarvis, Ian
Defourny, Pierre
author_role author
author2 de Abelleyra, Diego
Verón, Santiago Ramón
Zhang, Miao
Wu, Bingfang
Plotnikov, Dmitry
Bartalevev, Sergey
Lavreniuk, Mykola
Skakun, Sergii
Kussul, Nataliia
Le Maire, Guerric
Dupuy, Stéphane
Jarvis, Ian
Defourny, Pierre
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv LAND-USE
REMOTE-SENSING
JECAM
COMPARISON
topic LAND-USE
REMOTE-SENSING
JECAM
COMPARISON
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.
Fil: Waldner, François. Université Catholique de Louvain; Bélgica
Fil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Verón, Santiago Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Université Catholique de Louvain; Bélgica
Fil: Zhang, Miao. Chinese Academy of Sciences; República de China
Fil: Wu, Bingfang. Chinese Academy of Sciences; República de China
Fil: Plotnikov, Dmitry. Space Research Institute Of Russian Academy Of Sciences; Rusia. Université Catholique de Louvain; Bélgica
Fil: Bartalevev, Sergey. Space Research Institute Of Russian Academy Of Sciences; Rusia
Fil: Lavreniuk, Mykola. Space Research Institute Nas And Ssa; Ucrania
Fil: Skakun, Sergii. Space Research Institute Nas And Ssa; Ucrania
Fil: Kussul, Nataliia. Space Research Institute Nas And Ssa; Ucrania. Université Catholique de Louvain; Bélgica
Fil: Le Maire, Guerric. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Dupuy, Stéphane. No especifica;
Fil: Jarvis, Ian. Lethbridge Research Centre. Agriculture And Agri-foods; Canadá
Fil: Defourny, Pierre. Université Catholique de Louvain; Bélgica
description Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44210
Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; et al.; Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity; Taylor & Francis; International Journal of Remote Sensing; 37; 14; 6-2016; 3196-3231
0143-1161
1366-5901
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44210
identifier_str_mv Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; et al.; Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity; Taylor & Francis; International Journal of Remote Sensing; 37; 14; 6-2016; 3196-3231
0143-1161
1366-5901
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1194545
info:eu-repo/semantics/altIdentifier/doi/10.1080/01431161.2016.1194545
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606101244772352
score 13.001348