Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
- Autores
- Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; Plotnikov, Dmitry; Bartalevev, Sergey; Lavreniuk, Mykola; Skakun, Sergii; Kussul, Nataliia; Le Maire, Guerric; Dupuy, Stéphane; Jarvis, Ian; Defourny, Pierre
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.
Fil: Waldner, François. Université Catholique de Louvain; Bélgica
Fil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Verón, Santiago Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Université Catholique de Louvain; Bélgica
Fil: Zhang, Miao. Chinese Academy of Sciences; República de China
Fil: Wu, Bingfang. Chinese Academy of Sciences; República de China
Fil: Plotnikov, Dmitry. Space Research Institute Of Russian Academy Of Sciences; Rusia. Université Catholique de Louvain; Bélgica
Fil: Bartalevev, Sergey. Space Research Institute Of Russian Academy Of Sciences; Rusia
Fil: Lavreniuk, Mykola. Space Research Institute Nas And Ssa; Ucrania
Fil: Skakun, Sergii. Space Research Institute Nas And Ssa; Ucrania
Fil: Kussul, Nataliia. Space Research Institute Nas And Ssa; Ucrania. Université Catholique de Louvain; Bélgica
Fil: Le Maire, Guerric. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Dupuy, Stéphane. No especifica;
Fil: Jarvis, Ian. Lethbridge Research Centre. Agriculture And Agri-foods; Canadá
Fil: Defourny, Pierre. Université Catholique de Louvain; Bélgica - Materia
-
LAND-USE
REMOTE-SENSING
JECAM
COMPARISON - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44210
Ver los metadatos del registro completo
id |
CONICETDig_34a303b09350c0925ee387404eea4698 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44210 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversityWaldner, Françoisde Abelleyra, DiegoVerón, Santiago RamónZhang, MiaoWu, BingfangPlotnikov, DmitryBartalevev, SergeyLavreniuk, MykolaSkakun, SergiiKussul, NataliiaLe Maire, GuerricDupuy, StéphaneJarvis, IanDefourny, PierreLAND-USEREMOTE-SENSINGJECAMCOMPARISONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.Fil: Waldner, François. Université Catholique de Louvain; BélgicaFil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Verón, Santiago Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Université Catholique de Louvain; BélgicaFil: Zhang, Miao. Chinese Academy of Sciences; República de ChinaFil: Wu, Bingfang. Chinese Academy of Sciences; República de ChinaFil: Plotnikov, Dmitry. Space Research Institute Of Russian Academy Of Sciences; Rusia. Université Catholique de Louvain; BélgicaFil: Bartalevev, Sergey. Space Research Institute Of Russian Academy Of Sciences; RusiaFil: Lavreniuk, Mykola. Space Research Institute Nas And Ssa; UcraniaFil: Skakun, Sergii. Space Research Institute Nas And Ssa; UcraniaFil: Kussul, Nataliia. Space Research Institute Nas And Ssa; Ucrania. Université Catholique de Louvain; BélgicaFil: Le Maire, Guerric. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Dupuy, Stéphane. No especifica;Fil: Jarvis, Ian. Lethbridge Research Centre. Agriculture And Agri-foods; CanadáFil: Defourny, Pierre. Université Catholique de Louvain; BélgicaTaylor & Francis2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44210Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; et al.; Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity; Taylor & Francis; International Journal of Remote Sensing; 37; 14; 6-2016; 3196-32310143-11611366-5901CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1194545info:eu-repo/semantics/altIdentifier/doi/10.1080/01431161.2016.1194545info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:49:20Zoai:ri.conicet.gov.ar:11336/44210instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:49:20.274CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
spellingShingle |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity Waldner, François LAND-USE REMOTE-SENSING JECAM COMPARISON |
title_short |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title_full |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title_fullStr |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title_full_unstemmed |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title_sort |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
dc.creator.none.fl_str_mv |
Waldner, François de Abelleyra, Diego Verón, Santiago Ramón Zhang, Miao Wu, Bingfang Plotnikov, Dmitry Bartalevev, Sergey Lavreniuk, Mykola Skakun, Sergii Kussul, Nataliia Le Maire, Guerric Dupuy, Stéphane Jarvis, Ian Defourny, Pierre |
author |
Waldner, François |
author_facet |
Waldner, François de Abelleyra, Diego Verón, Santiago Ramón Zhang, Miao Wu, Bingfang Plotnikov, Dmitry Bartalevev, Sergey Lavreniuk, Mykola Skakun, Sergii Kussul, Nataliia Le Maire, Guerric Dupuy, Stéphane Jarvis, Ian Defourny, Pierre |
author_role |
author |
author2 |
de Abelleyra, Diego Verón, Santiago Ramón Zhang, Miao Wu, Bingfang Plotnikov, Dmitry Bartalevev, Sergey Lavreniuk, Mykola Skakun, Sergii Kussul, Nataliia Le Maire, Guerric Dupuy, Stéphane Jarvis, Ian Defourny, Pierre |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
LAND-USE REMOTE-SENSING JECAM COMPARISON |
topic |
LAND-USE REMOTE-SENSING JECAM COMPARISON |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes. Fil: Waldner, François. Université Catholique de Louvain; Bélgica Fil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: Verón, Santiago Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Université Catholique de Louvain; Bélgica Fil: Zhang, Miao. Chinese Academy of Sciences; República de China Fil: Wu, Bingfang. Chinese Academy of Sciences; República de China Fil: Plotnikov, Dmitry. Space Research Institute Of Russian Academy Of Sciences; Rusia. Université Catholique de Louvain; Bélgica Fil: Bartalevev, Sergey. Space Research Institute Of Russian Academy Of Sciences; Rusia Fil: Lavreniuk, Mykola. Space Research Institute Nas And Ssa; Ucrania Fil: Skakun, Sergii. Space Research Institute Nas And Ssa; Ucrania Fil: Kussul, Nataliia. Space Research Institute Nas And Ssa; Ucrania. Université Catholique de Louvain; Bélgica Fil: Le Maire, Guerric. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil Fil: Dupuy, Stéphane. No especifica; Fil: Jarvis, Ian. Lethbridge Research Centre. Agriculture And Agri-foods; Canadá Fil: Defourny, Pierre. Université Catholique de Louvain; Bélgica |
description |
Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44210 Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; et al.; Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity; Taylor & Francis; International Journal of Remote Sensing; 37; 14; 6-2016; 3196-3231 0143-1161 1366-5901 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44210 |
identifier_str_mv |
Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; et al.; Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity; Taylor & Francis; International Journal of Remote Sensing; 37; 14; 6-2016; 3196-3231 0143-1161 1366-5901 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1194545 info:eu-repo/semantics/altIdentifier/doi/10.1080/01431161.2016.1194545 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606101244772352 |
score |
13.001348 |