Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity

Autores
Waldner, François; De Abelleyra, Diego; Veron, Santiago Ramón; Zhang, Miao; Wu, Bingfang; Plotnikov, Dmitry; Bartalev, Sergey; Lavreniuk, Mykola; Skakun, Sergii; Kussul, Nataliia; Le Maire, Guerric; Dupuy, Stéphane; Jarvis, Ian; Defourny, Pierre
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.
Instituto de Clima y Agua
Fil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgica
Fil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina
Fil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; China
Fil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; China
Fil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; Rusia
Fil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; Rusia
Fil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania
Fil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados Unidos
Fil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania
Fil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; Brasil
Fil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; Francia
Fil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; Canadá
Fil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgica
Fuente
International journal of remote sensing 37 (14) : 3196–3231. (2016)
Materia
Agroecosistemas
Tierras Agrícolas
Cartografía del Uso de la Tierra
Agroecosystems
Farmland
Land Use Mapping
Global Positioning Systems
Sistema de Posicionamiento Global
Moderate Resolution Imaging Spectroradiometer
MODIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/4057

id INTADig_b34a8730c60c238c02c75e4a2eb81dbc
oai_identifier_str oai:localhost:20.500.12123/4057
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversityWaldner, FrançoisDe Abelleyra, DiegoVeron, Santiago RamónZhang, MiaoWu, BingfangPlotnikov, DmitryBartalev, SergeyLavreniuk, MykolaSkakun, SergiiKussul, NataliiaLe Maire, GuerricDupuy, StéphaneJarvis, IanDefourny, PierreAgroecosistemasTierras AgrícolasCartografía del Uso de la TierraAgroecosystemsFarmlandLand Use MappingGlobal Positioning SystemsSistema de Posicionamiento GlobalModerate Resolution Imaging SpectroradiometerMODISAccurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.Instituto de Clima y AguaFil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; BelgicaFil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados UnidosFil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; BrasilFil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; FranciaFil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; CanadáFil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; BelgicaInforma UK Limited2018-12-11T15:42:01Z2018-12-11T15:42:01Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/4057https://www.tandfonline.com/doi/full/10.1080/01431161.2016.11945450143-11611366-5901 (Online)https://doi.org/10.1080/01431161.2016.1194545International journal of remote sensing 37 (14) : 3196–3231. (2016)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:29:23Zoai:localhost:20.500.12123/4057instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:23.877INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
spellingShingle Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
Waldner, François
Agroecosistemas
Tierras Agrícolas
Cartografía del Uso de la Tierra
Agroecosystems
Farmland
Land Use Mapping
Global Positioning Systems
Sistema de Posicionamiento Global
Moderate Resolution Imaging Spectroradiometer
MODIS
title_short Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title_full Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title_fullStr Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title_full_unstemmed Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
title_sort Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
dc.creator.none.fl_str_mv Waldner, François
De Abelleyra, Diego
Veron, Santiago Ramón
Zhang, Miao
Wu, Bingfang
Plotnikov, Dmitry
Bartalev, Sergey
Lavreniuk, Mykola
Skakun, Sergii
Kussul, Nataliia
Le Maire, Guerric
Dupuy, Stéphane
Jarvis, Ian
Defourny, Pierre
author Waldner, François
author_facet Waldner, François
De Abelleyra, Diego
Veron, Santiago Ramón
Zhang, Miao
Wu, Bingfang
Plotnikov, Dmitry
Bartalev, Sergey
Lavreniuk, Mykola
Skakun, Sergii
Kussul, Nataliia
Le Maire, Guerric
Dupuy, Stéphane
Jarvis, Ian
Defourny, Pierre
author_role author
author2 De Abelleyra, Diego
Veron, Santiago Ramón
Zhang, Miao
Wu, Bingfang
Plotnikov, Dmitry
Bartalev, Sergey
Lavreniuk, Mykola
Skakun, Sergii
Kussul, Nataliia
Le Maire, Guerric
Dupuy, Stéphane
Jarvis, Ian
Defourny, Pierre
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Agroecosistemas
Tierras Agrícolas
Cartografía del Uso de la Tierra
Agroecosystems
Farmland
Land Use Mapping
Global Positioning Systems
Sistema de Posicionamiento Global
Moderate Resolution Imaging Spectroradiometer
MODIS
topic Agroecosistemas
Tierras Agrícolas
Cartografía del Uso de la Tierra
Agroecosystems
Farmland
Land Use Mapping
Global Positioning Systems
Sistema de Posicionamiento Global
Moderate Resolution Imaging Spectroradiometer
MODIS
dc.description.none.fl_txt_mv Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.
Instituto de Clima y Agua
Fil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgica
Fil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina
Fil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; China
Fil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; China
Fil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; Rusia
Fil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; Rusia
Fil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania
Fil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados Unidos
Fil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania
Fil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; Brasil
Fil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; Francia
Fil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; Canadá
Fil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgica
description Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-12-11T15:42:01Z
2018-12-11T15:42:01Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/4057
https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1194545
0143-1161
1366-5901 (Online)
https://doi.org/10.1080/01431161.2016.1194545
url http://hdl.handle.net/20.500.12123/4057
https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1194545
https://doi.org/10.1080/01431161.2016.1194545
identifier_str_mv 0143-1161
1366-5901 (Online)
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Informa UK Limited
publisher.none.fl_str_mv Informa UK Limited
dc.source.none.fl_str_mv International journal of remote sensing 37 (14) : 3196–3231. (2016)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143509076115456
score 12.712165