Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
- Autores
- Waldner, François; De Abelleyra, Diego; Veron, Santiago Ramón; Zhang, Miao; Wu, Bingfang; Plotnikov, Dmitry; Bartalev, Sergey; Lavreniuk, Mykola; Skakun, Sergii; Kussul, Nataliia; Le Maire, Guerric; Dupuy, Stéphane; Jarvis, Ian; Defourny, Pierre
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.
Instituto de Clima y Agua
Fil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgica
Fil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina
Fil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; China
Fil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; China
Fil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; Rusia
Fil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; Rusia
Fil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania
Fil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados Unidos
Fil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania
Fil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; Brasil
Fil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; Francia
Fil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; Canadá
Fil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgica - Fuente
- International journal of remote sensing 37 (14) : 3196–3231. (2016)
- Materia
-
Agroecosistemas
Tierras Agrícolas
Cartografía del Uso de la Tierra
Agroecosystems
Farmland
Land Use Mapping
Global Positioning Systems
Sistema de Posicionamiento Global
Moderate Resolution Imaging Spectroradiometer
MODIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/4057
Ver los metadatos del registro completo
id |
INTADig_b34a8730c60c238c02c75e4a2eb81dbc |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/4057 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversityWaldner, FrançoisDe Abelleyra, DiegoVeron, Santiago RamónZhang, MiaoWu, BingfangPlotnikov, DmitryBartalev, SergeyLavreniuk, MykolaSkakun, SergiiKussul, NataliiaLe Maire, GuerricDupuy, StéphaneJarvis, IanDefourny, PierreAgroecosistemasTierras AgrícolasCartografía del Uso de la TierraAgroecosystemsFarmlandLand Use MappingGlobal Positioning SystemsSistema de Posicionamiento GlobalModerate Resolution Imaging SpectroradiometerMODISAccurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.Instituto de Clima y AguaFil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; BelgicaFil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados UnidosFil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; BrasilFil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; FranciaFil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; CanadáFil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; BelgicaInforma UK Limited2018-12-11T15:42:01Z2018-12-11T15:42:01Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/4057https://www.tandfonline.com/doi/full/10.1080/01431161.2016.11945450143-11611366-5901 (Online)https://doi.org/10.1080/01431161.2016.1194545International journal of remote sensing 37 (14) : 3196–3231. (2016)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:29:23Zoai:localhost:20.500.12123/4057instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:23.877INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
spellingShingle |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity Waldner, François Agroecosistemas Tierras Agrícolas Cartografía del Uso de la Tierra Agroecosystems Farmland Land Use Mapping Global Positioning Systems Sistema de Posicionamiento Global Moderate Resolution Imaging Spectroradiometer MODIS |
title_short |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title_full |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title_fullStr |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title_full_unstemmed |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
title_sort |
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity |
dc.creator.none.fl_str_mv |
Waldner, François De Abelleyra, Diego Veron, Santiago Ramón Zhang, Miao Wu, Bingfang Plotnikov, Dmitry Bartalev, Sergey Lavreniuk, Mykola Skakun, Sergii Kussul, Nataliia Le Maire, Guerric Dupuy, Stéphane Jarvis, Ian Defourny, Pierre |
author |
Waldner, François |
author_facet |
Waldner, François De Abelleyra, Diego Veron, Santiago Ramón Zhang, Miao Wu, Bingfang Plotnikov, Dmitry Bartalev, Sergey Lavreniuk, Mykola Skakun, Sergii Kussul, Nataliia Le Maire, Guerric Dupuy, Stéphane Jarvis, Ian Defourny, Pierre |
author_role |
author |
author2 |
De Abelleyra, Diego Veron, Santiago Ramón Zhang, Miao Wu, Bingfang Plotnikov, Dmitry Bartalev, Sergey Lavreniuk, Mykola Skakun, Sergii Kussul, Nataliia Le Maire, Guerric Dupuy, Stéphane Jarvis, Ian Defourny, Pierre |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Agroecosistemas Tierras Agrícolas Cartografía del Uso de la Tierra Agroecosystems Farmland Land Use Mapping Global Positioning Systems Sistema de Posicionamiento Global Moderate Resolution Imaging Spectroradiometer MODIS |
topic |
Agroecosistemas Tierras Agrícolas Cartografía del Uso de la Tierra Agroecosystems Farmland Land Use Mapping Global Positioning Systems Sistema de Posicionamiento Global Moderate Resolution Imaging Spectroradiometer MODIS |
dc.description.none.fl_txt_mv |
Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes. Instituto de Clima y Agua Fil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgica Fil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina Fil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; China Fil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; China Fil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; Rusia Fil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; Rusia Fil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania Fil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados Unidos Fil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania Fil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; Brasil Fil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; Francia Fil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; Canadá Fil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgica |
description |
Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2018-12-11T15:42:01Z 2018-12-11T15:42:01Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/4057 https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1194545 0143-1161 1366-5901 (Online) https://doi.org/10.1080/01431161.2016.1194545 |
url |
http://hdl.handle.net/20.500.12123/4057 https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1194545 https://doi.org/10.1080/01431161.2016.1194545 |
identifier_str_mv |
0143-1161 1366-5901 (Online) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Informa UK Limited |
publisher.none.fl_str_mv |
Informa UK Limited |
dc.source.none.fl_str_mv |
International journal of remote sensing 37 (14) : 3196–3231. (2016) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143509076115456 |
score |
12.712165 |