Use of state estimation for inferential nonlinear MPC: a case study
- Autores
- Biagiola, Silvina Ines; Solsona, Jorge Alberto; Figueroa, Jose Luis
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Model predictive control (MPC) has become very popular in process industry and academia because it is an optimizing control technique which can handle hard constraints as well as time delays and mild nonlinearities. Linear MPC may control nonlinear processes by obtaining a linearized model of the plant, however, this approach is only valid in a limited region. In the presence of marked nonlinearities, a substantial improvement can be achieved by using the whole knowledge of the process dynamics. The use of a nonlinear model for MPC involves the knowledge of the complete state vector and the most significative perturbations in order to obtain the best performance. However, this information may not be directly available through measurement. In this paper, we propose the use of a nonlinear estimator to update the state vector and to infer the unmeasured perturbations. All the development herein presented is in the context of the control of an open-loop unstable nonlinear reactor with a measurement delay in the controlled variable.
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Solsona, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina - Materia
-
NONLINEAR MODEL PREDICTIVE CONTROL
STATE ESTIMATION
INFERENTIAL CONTROL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104450
Ver los metadatos del registro completo
id |
CONICETDig_d06874643759f39d29b0a970f6c068ef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104450 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Use of state estimation for inferential nonlinear MPC: a case studyBiagiola, Silvina InesSolsona, Jorge AlbertoFigueroa, Jose LuisNONLINEAR MODEL PREDICTIVE CONTROLSTATE ESTIMATIONINFERENTIAL CONTROLhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Model predictive control (MPC) has become very popular in process industry and academia because it is an optimizing control technique which can handle hard constraints as well as time delays and mild nonlinearities. Linear MPC may control nonlinear processes by obtaining a linearized model of the plant, however, this approach is only valid in a limited region. In the presence of marked nonlinearities, a substantial improvement can be achieved by using the whole knowledge of the process dynamics. The use of a nonlinear model for MPC involves the knowledge of the complete state vector and the most significative perturbations in order to obtain the best performance. However, this information may not be directly available through measurement. In this paper, we propose the use of a nonlinear estimator to update the state vector and to infer the unmeasured perturbations. All the development herein presented is in the context of the control of an open-loop unstable nonlinear reactor with a measurement delay in the controlled variable.Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Solsona, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaElsevier Science Sa2005-01-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104450Biagiola, Silvina Ines; Solsona, Jorge Alberto; Figueroa, Jose Luis; Use of state estimation for inferential nonlinear MPC: a case study; Elsevier Science Sa; Chemical Engineering Journal; 106; 1; 28-1-2005; 13-241385-8947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1385894704003572info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2004.11.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:20Zoai:ri.conicet.gov.ar:11336/104450instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:20.587CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Use of state estimation for inferential nonlinear MPC: a case study |
title |
Use of state estimation for inferential nonlinear MPC: a case study |
spellingShingle |
Use of state estimation for inferential nonlinear MPC: a case study Biagiola, Silvina Ines NONLINEAR MODEL PREDICTIVE CONTROL STATE ESTIMATION INFERENTIAL CONTROL |
title_short |
Use of state estimation for inferential nonlinear MPC: a case study |
title_full |
Use of state estimation for inferential nonlinear MPC: a case study |
title_fullStr |
Use of state estimation for inferential nonlinear MPC: a case study |
title_full_unstemmed |
Use of state estimation for inferential nonlinear MPC: a case study |
title_sort |
Use of state estimation for inferential nonlinear MPC: a case study |
dc.creator.none.fl_str_mv |
Biagiola, Silvina Ines Solsona, Jorge Alberto Figueroa, Jose Luis |
author |
Biagiola, Silvina Ines |
author_facet |
Biagiola, Silvina Ines Solsona, Jorge Alberto Figueroa, Jose Luis |
author_role |
author |
author2 |
Solsona, Jorge Alberto Figueroa, Jose Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NONLINEAR MODEL PREDICTIVE CONTROL STATE ESTIMATION INFERENTIAL CONTROL |
topic |
NONLINEAR MODEL PREDICTIVE CONTROL STATE ESTIMATION INFERENTIAL CONTROL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Model predictive control (MPC) has become very popular in process industry and academia because it is an optimizing control technique which can handle hard constraints as well as time delays and mild nonlinearities. Linear MPC may control nonlinear processes by obtaining a linearized model of the plant, however, this approach is only valid in a limited region. In the presence of marked nonlinearities, a substantial improvement can be achieved by using the whole knowledge of the process dynamics. The use of a nonlinear model for MPC involves the knowledge of the complete state vector and the most significative perturbations in order to obtain the best performance. However, this information may not be directly available through measurement. In this paper, we propose the use of a nonlinear estimator to update the state vector and to infer the unmeasured perturbations. All the development herein presented is in the context of the control of an open-loop unstable nonlinear reactor with a measurement delay in the controlled variable. Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Solsona, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina |
description |
Model predictive control (MPC) has become very popular in process industry and academia because it is an optimizing control technique which can handle hard constraints as well as time delays and mild nonlinearities. Linear MPC may control nonlinear processes by obtaining a linearized model of the plant, however, this approach is only valid in a limited region. In the presence of marked nonlinearities, a substantial improvement can be achieved by using the whole knowledge of the process dynamics. The use of a nonlinear model for MPC involves the knowledge of the complete state vector and the most significative perturbations in order to obtain the best performance. However, this information may not be directly available through measurement. In this paper, we propose the use of a nonlinear estimator to update the state vector and to infer the unmeasured perturbations. All the development herein presented is in the context of the control of an open-loop unstable nonlinear reactor with a measurement delay in the controlled variable. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-01-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104450 Biagiola, Silvina Ines; Solsona, Jorge Alberto; Figueroa, Jose Luis; Use of state estimation for inferential nonlinear MPC: a case study; Elsevier Science Sa; Chemical Engineering Journal; 106; 1; 28-1-2005; 13-24 1385-8947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104450 |
identifier_str_mv |
Biagiola, Silvina Ines; Solsona, Jorge Alberto; Figueroa, Jose Luis; Use of state estimation for inferential nonlinear MPC: a case study; Elsevier Science Sa; Chemical Engineering Journal; 106; 1; 28-1-2005; 13-24 1385-8947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1385894704003572 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2004.11.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269217255063552 |
score |
13.13397 |