Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas

Autores
Landi, Marcos Alejandro; Ojeda, S.; Di Bella, Carlos Marcelo; Salvatierra, P.; Argañaraz, Juan Pablo; Bellis, Laura Marisa
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Los regímenes naturales de incendios han sufrido modificaciones; consecuentemente, es indispensable disponer de herramientas robustas para el seguimiento post-fuego de la vegetación. Los satélites de alta resolución temporal permiten construir series temporales de índices de vegetación para monitorear la recuperación post-fuego. Una de las técnicas utilizadas consiste en comparar la serie temporal de una parcela quemada con la de una parcela control no quemada. Sin embargo, para su implementación es necesario seleccionar parcelas control que antes del incendio tengan una vegetación con igual estructura y funcionamiento que la parcela quemada. Un estudio previo definió criterios biológicos para localizar parcelas quemadas y control con idéntico funcionamiento pre-incendio. Para testearlos se propuso una rutina de test no paramétricos de baja potencia estadística, analizando el cociente QVI (Quotient Vegetation Index) de las series temporales de NDVI (Normalized Difference Vegetation Index) de parcelas control y quemadas. Sin embargo, actualmente existen técnicas de análisis autorregresivas con mayor potencia estadística. Los objetivos del presente trabajo fueron proponer seis nuevas rutinas basadas en test autorregresivos y comparar el desempeño de éstas contra la rutina no paramétrica. Seleccionamos 13.700 parcelas de bosque y extrajimos las series temporales NDVI MODIS entre 2002 y 2005. Aleatoriamente seleccionamos 43 parcelas de referencia. A través de las rutinas planteadas comparamos la serie temporal de referencia con cada una de las 13.657 series restantes. Estimamos el desempeño midiendo la distancia euclidiana entre la serie de temporal de la parcela de referencia y las series temporales de las parcelas aceptadas por cada rutina. También, medimos la calidad y contabilizamos la cantidad de las series temporales QVI seleccionadas por cada rutina. Las rutinas autorregresivas tuvieron mejor desempeño, ya que seleccionaron parcelas control con series temporales de NDVI con la máxima similitud con respecto a las parcelas de referencia y series QVI de mayor calidad.
Natural fire regimes have been modified; therefore robust post-fire monitoring tools are needed to understand the post-fire recovery process. Satellites with high temporal resolution allow us to build time series of vegetation indices for monitoring post-fire vegetation recovery. One of the techniques used is to compare the time series of a burned plot with that of an unburned control plot. However, for its implementation it is necessary to select control plots in which the vegetation has the same structure and functioning than the plot burned before the fire. Previous study defined biological criteria to detect burned and unburned control plots with identical pre-fire vegetation functioning. Moreover, a non-parametric test routine of low statistical power was proposed to test them, this was based on the analysis of the QVI (Quotient Vegetation Index), calculated between NDVI (Normalized Difference Vegetation Index) time series of the burned and control site. However, currently there are autoregressive analysis techniques with greater statistical power. Therefore the aims were to propose six new statistical routines based on autoregressive test, and compare the performance of these with the non-parametric routine. We selected 13,700 forest plots and extracted the NDVI MODIS time series between 2002 and 2005. We randomly selected 43 reference plots, and through each routine, we compared each reference time series with the other 13,657 time series. We estimated the performance of the routines measuring the euclidian distance between the time series of the reference plot and the time series of the plots accepted for each routine. We also measured the quality and the amount of the QVI time series selected by each routine. Autoregressive routines showed better performance than the non-parametric routine, since they selected control plots with NDVI time series with greatest similarity with respect to the reference plots and QVI series with highest quality.
Fil: Landi, Marcos Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Fil: Ojeda, S.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Di Bella, Carlos Marcelo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina
Fil: Salvatierra, P.. Universidad Nacional de Villa María; Argentina
Fil: Argañaraz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Materia
Control Plot Selection
Fire Ecology
Ndvi Modis
Ndvi Time Series Analysis
Post-Fire Monitoring
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57016

id CONICETDig_332c7ebcd7cc9e322a89804ad1808444
oai_identifier_str oai:ri.conicet.gov.ar:11336/57016
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivasControl plot selection for studies of post-fire dynamics: performance of non-parametric and autoregressive routinesLandi, Marcos AlejandroOjeda, S.Di Bella, Carlos MarceloSalvatierra, P.Argañaraz, Juan PabloBellis, Laura MarisaControl Plot SelectionFire EcologyNdvi ModisNdvi Time Series AnalysisPost-Fire Monitoringhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Los regímenes naturales de incendios han sufrido modificaciones; consecuentemente, es indispensable disponer de herramientas robustas para el seguimiento post-fuego de la vegetación. Los satélites de alta resolución temporal permiten construir series temporales de índices de vegetación para monitorear la recuperación post-fuego. Una de las técnicas utilizadas consiste en comparar la serie temporal de una parcela quemada con la de una parcela control no quemada. Sin embargo, para su implementación es necesario seleccionar parcelas control que antes del incendio tengan una vegetación con igual estructura y funcionamiento que la parcela quemada. Un estudio previo definió criterios biológicos para localizar parcelas quemadas y control con idéntico funcionamiento pre-incendio. Para testearlos se propuso una rutina de test no paramétricos de baja potencia estadística, analizando el cociente QVI (Quotient Vegetation Index) de las series temporales de NDVI (Normalized Difference Vegetation Index) de parcelas control y quemadas. Sin embargo, actualmente existen técnicas de análisis autorregresivas con mayor potencia estadística. Los objetivos del presente trabajo fueron proponer seis nuevas rutinas basadas en test autorregresivos y comparar el desempeño de éstas contra la rutina no paramétrica. Seleccionamos 13.700 parcelas de bosque y extrajimos las series temporales NDVI MODIS entre 2002 y 2005. Aleatoriamente seleccionamos 43 parcelas de referencia. A través de las rutinas planteadas comparamos la serie temporal de referencia con cada una de las 13.657 series restantes. Estimamos el desempeño midiendo la distancia euclidiana entre la serie de temporal de la parcela de referencia y las series temporales de las parcelas aceptadas por cada rutina. También, medimos la calidad y contabilizamos la cantidad de las series temporales QVI seleccionadas por cada rutina. Las rutinas autorregresivas tuvieron mejor desempeño, ya que seleccionaron parcelas control con series temporales de NDVI con la máxima similitud con respecto a las parcelas de referencia y series QVI de mayor calidad.Natural fire regimes have been modified; therefore robust post-fire monitoring tools are needed to understand the post-fire recovery process. Satellites with high temporal resolution allow us to build time series of vegetation indices for monitoring post-fire vegetation recovery. One of the techniques used is to compare the time series of a burned plot with that of an unburned control plot. However, for its implementation it is necessary to select control plots in which the vegetation has the same structure and functioning than the plot burned before the fire. Previous study defined biological criteria to detect burned and unburned control plots with identical pre-fire vegetation functioning. Moreover, a non-parametric test routine of low statistical power was proposed to test them, this was based on the analysis of the QVI (Quotient Vegetation Index), calculated between NDVI (Normalized Difference Vegetation Index) time series of the burned and control site. However, currently there are autoregressive analysis techniques with greater statistical power. Therefore the aims were to propose six new statistical routines based on autoregressive test, and compare the performance of these with the non-parametric routine. We selected 13,700 forest plots and extracted the NDVI MODIS time series between 2002 and 2005. We randomly selected 43 reference plots, and through each routine, we compared each reference time series with the other 13,657 time series. We estimated the performance of the routines measuring the euclidian distance between the time series of the reference plot and the time series of the plots accepted for each routine. We also measured the quality and the amount of the QVI time series selected by each routine. Autoregressive routines showed better performance than the non-parametric routine, since they selected control plots with NDVI time series with greatest similarity with respect to the reference plots and QVI series with highest quality.Fil: Landi, Marcos Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaFil: Ojeda, S.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Di Bella, Carlos Marcelo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; ArgentinaFil: Salvatierra, P.. Universidad Nacional de Villa María; ArgentinaFil: Argañaraz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaFil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaUniversitat Politecnica de Valencia2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57016Landi, Marcos Alejandro; Ojeda, S.; Di Bella, Carlos Marcelo; Salvatierra, P.; Argañaraz, Juan Pablo; et al.; Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas; Universitat Politecnica de Valencia; Revista de Teledeteccion; 2017; 49 Special Issue; 11-2017; 79-901133-09531988-8740CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://polipapers.upv.es/index.php/raet/article/view/7116info:eu-repo/semantics/altIdentifier/doi/10.4995/raet.2017.7116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:06Zoai:ri.conicet.gov.ar:11336/57016instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:06.823CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas
Control plot selection for studies of post-fire dynamics: performance of non-parametric and autoregressive routines
title Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas
spellingShingle Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas
Landi, Marcos Alejandro
Control Plot Selection
Fire Ecology
Ndvi Modis
Ndvi Time Series Analysis
Post-Fire Monitoring
title_short Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas
title_full Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas
title_fullStr Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas
title_full_unstemmed Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas
title_sort Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas
dc.creator.none.fl_str_mv Landi, Marcos Alejandro
Ojeda, S.
Di Bella, Carlos Marcelo
Salvatierra, P.
Argañaraz, Juan Pablo
Bellis, Laura Marisa
author Landi, Marcos Alejandro
author_facet Landi, Marcos Alejandro
Ojeda, S.
Di Bella, Carlos Marcelo
Salvatierra, P.
Argañaraz, Juan Pablo
Bellis, Laura Marisa
author_role author
author2 Ojeda, S.
Di Bella, Carlos Marcelo
Salvatierra, P.
Argañaraz, Juan Pablo
Bellis, Laura Marisa
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Control Plot Selection
Fire Ecology
Ndvi Modis
Ndvi Time Series Analysis
Post-Fire Monitoring
topic Control Plot Selection
Fire Ecology
Ndvi Modis
Ndvi Time Series Analysis
Post-Fire Monitoring
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Los regímenes naturales de incendios han sufrido modificaciones; consecuentemente, es indispensable disponer de herramientas robustas para el seguimiento post-fuego de la vegetación. Los satélites de alta resolución temporal permiten construir series temporales de índices de vegetación para monitorear la recuperación post-fuego. Una de las técnicas utilizadas consiste en comparar la serie temporal de una parcela quemada con la de una parcela control no quemada. Sin embargo, para su implementación es necesario seleccionar parcelas control que antes del incendio tengan una vegetación con igual estructura y funcionamiento que la parcela quemada. Un estudio previo definió criterios biológicos para localizar parcelas quemadas y control con idéntico funcionamiento pre-incendio. Para testearlos se propuso una rutina de test no paramétricos de baja potencia estadística, analizando el cociente QVI (Quotient Vegetation Index) de las series temporales de NDVI (Normalized Difference Vegetation Index) de parcelas control y quemadas. Sin embargo, actualmente existen técnicas de análisis autorregresivas con mayor potencia estadística. Los objetivos del presente trabajo fueron proponer seis nuevas rutinas basadas en test autorregresivos y comparar el desempeño de éstas contra la rutina no paramétrica. Seleccionamos 13.700 parcelas de bosque y extrajimos las series temporales NDVI MODIS entre 2002 y 2005. Aleatoriamente seleccionamos 43 parcelas de referencia. A través de las rutinas planteadas comparamos la serie temporal de referencia con cada una de las 13.657 series restantes. Estimamos el desempeño midiendo la distancia euclidiana entre la serie de temporal de la parcela de referencia y las series temporales de las parcelas aceptadas por cada rutina. También, medimos la calidad y contabilizamos la cantidad de las series temporales QVI seleccionadas por cada rutina. Las rutinas autorregresivas tuvieron mejor desempeño, ya que seleccionaron parcelas control con series temporales de NDVI con la máxima similitud con respecto a las parcelas de referencia y series QVI de mayor calidad.
Natural fire regimes have been modified; therefore robust post-fire monitoring tools are needed to understand the post-fire recovery process. Satellites with high temporal resolution allow us to build time series of vegetation indices for monitoring post-fire vegetation recovery. One of the techniques used is to compare the time series of a burned plot with that of an unburned control plot. However, for its implementation it is necessary to select control plots in which the vegetation has the same structure and functioning than the plot burned before the fire. Previous study defined biological criteria to detect burned and unburned control plots with identical pre-fire vegetation functioning. Moreover, a non-parametric test routine of low statistical power was proposed to test them, this was based on the analysis of the QVI (Quotient Vegetation Index), calculated between NDVI (Normalized Difference Vegetation Index) time series of the burned and control site. However, currently there are autoregressive analysis techniques with greater statistical power. Therefore the aims were to propose six new statistical routines based on autoregressive test, and compare the performance of these with the non-parametric routine. We selected 13,700 forest plots and extracted the NDVI MODIS time series between 2002 and 2005. We randomly selected 43 reference plots, and through each routine, we compared each reference time series with the other 13,657 time series. We estimated the performance of the routines measuring the euclidian distance between the time series of the reference plot and the time series of the plots accepted for each routine. We also measured the quality and the amount of the QVI time series selected by each routine. Autoregressive routines showed better performance than the non-parametric routine, since they selected control plots with NDVI time series with greatest similarity with respect to the reference plots and QVI series with highest quality.
Fil: Landi, Marcos Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Fil: Ojeda, S.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Di Bella, Carlos Marcelo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina
Fil: Salvatierra, P.. Universidad Nacional de Villa María; Argentina
Fil: Argañaraz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
description Los regímenes naturales de incendios han sufrido modificaciones; consecuentemente, es indispensable disponer de herramientas robustas para el seguimiento post-fuego de la vegetación. Los satélites de alta resolución temporal permiten construir series temporales de índices de vegetación para monitorear la recuperación post-fuego. Una de las técnicas utilizadas consiste en comparar la serie temporal de una parcela quemada con la de una parcela control no quemada. Sin embargo, para su implementación es necesario seleccionar parcelas control que antes del incendio tengan una vegetación con igual estructura y funcionamiento que la parcela quemada. Un estudio previo definió criterios biológicos para localizar parcelas quemadas y control con idéntico funcionamiento pre-incendio. Para testearlos se propuso una rutina de test no paramétricos de baja potencia estadística, analizando el cociente QVI (Quotient Vegetation Index) de las series temporales de NDVI (Normalized Difference Vegetation Index) de parcelas control y quemadas. Sin embargo, actualmente existen técnicas de análisis autorregresivas con mayor potencia estadística. Los objetivos del presente trabajo fueron proponer seis nuevas rutinas basadas en test autorregresivos y comparar el desempeño de éstas contra la rutina no paramétrica. Seleccionamos 13.700 parcelas de bosque y extrajimos las series temporales NDVI MODIS entre 2002 y 2005. Aleatoriamente seleccionamos 43 parcelas de referencia. A través de las rutinas planteadas comparamos la serie temporal de referencia con cada una de las 13.657 series restantes. Estimamos el desempeño midiendo la distancia euclidiana entre la serie de temporal de la parcela de referencia y las series temporales de las parcelas aceptadas por cada rutina. También, medimos la calidad y contabilizamos la cantidad de las series temporales QVI seleccionadas por cada rutina. Las rutinas autorregresivas tuvieron mejor desempeño, ya que seleccionaron parcelas control con series temporales de NDVI con la máxima similitud con respecto a las parcelas de referencia y series QVI de mayor calidad.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57016
Landi, Marcos Alejandro; Ojeda, S.; Di Bella, Carlos Marcelo; Salvatierra, P.; Argañaraz, Juan Pablo; et al.; Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas; Universitat Politecnica de Valencia; Revista de Teledeteccion; 2017; 49 Special Issue; 11-2017; 79-90
1133-0953
1988-8740
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57016
identifier_str_mv Landi, Marcos Alejandro; Ojeda, S.; Di Bella, Carlos Marcelo; Salvatierra, P.; Argañaraz, Juan Pablo; et al.; Selección de parcelas control para estudios de la dinámica post-incendios: desempeño de rutinas no paramétricas y autorregresivas; Universitat Politecnica de Valencia; Revista de Teledeteccion; 2017; 49 Special Issue; 11-2017; 79-90
1133-0953
1988-8740
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://polipapers.upv.es/index.php/raet/article/view/7116
info:eu-repo/semantics/altIdentifier/doi/10.4995/raet.2017.7116
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universitat Politecnica de Valencia
publisher.none.fl_str_mv Universitat Politecnica de Valencia
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613905804951552
score 13.070432